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SUMMARY

Members of the ribonuclease III (RNase III)
family are double-stranded RNA (dsRNA)
specific endoribonucleases characterized
by a signature motif in their active centers
and a two-base 30 overhang in their prod-
ucts. While Dicer, which produces small in-
terfering RNAs, is currently the focus of
intense interest, the structurally simpler
bacterial RNase III serves as a paradigm
for the entire family. Here, we present the
crystal structure of an RNase III-product
complex, the first catalytic complex ob-
served for the family. A 7 residue linker
within the protein facilitates induced fit in
protein-RNA recognition. A pattern of pro-
tein-RNA interactions, defined by four RNA
binding motifs in RNase III and three pro-
tein-interacting boxes in dsRNA, is respon-
sible for substrate specificity, while con-
served amino acid residues and divalent
cations are responsible for scissile-bond
cleavage. The structure reveals a wealth
of information about the mechanism of
RNA hydrolysis that can be extrapolated
to other RNase III family members.

INTRODUCTION

Ribonuclease III (RNase III) represents a highly conserved

family of double-stranded RNA (dsRNA) specific endoribo-

nucleases (Court, 1993; Filippov et al., 2000; Krainer,

1997; Nicholson, 1996, 1999; Robertson et al., 1968). It

plays important roles in RNA processing (Robertson et al.,

1968) and posttranscriptional gene-expression control

(Court, 1993; Krainer, 1997; Wu et al., 2000). RNase III has

gained added importance with the recent discovery of the

role that Dicer plays in RNA interference, a broad class of
gene-silencing phenomena initiated by dsRNA (Bernstein

et al., 2001; Carthew, 2001). The RNase III family can be di-

vided into four classes with increasing molecular weight and

complexity of the polypeptide chain, exemplified by bacterial

RNase III, Saccharomyces cerevisiae Rnt1p, Drosophila

melanogaster Drosha, and Homo sapiens Dicer, respec-

tively (Blaszczyk et al., 2004). The bacterial RNase III pro-

teins, such as Escherichia coli RNase III (Ec-RNase III) and

Aquifex aeolicus RNase III (Aa-RNase III), are composed of

an endonuclease domain (endoND) followed by a dsRNA

binding domain (dsRBD). In addition to an endoND and

a dsRBD, Rnt1p has an N-terminal domain of �200 amino

acid residues (Lamontagne et al., 2001). Drosha has a large

N-terminal extension of �900 amino acid residues followed

by two endoNDs and one dsRBD (Filippov et al., 2000).

Finally, Dicer has two endoNDs, one dsRBD, and an even

larger N-terminal extension of �1500 amino acid residues

that includes an RNA helicase domain and a PAZ (Piwi Argo-

naute Zwille) domain (Bernstein et al., 2001). The sequence

of the endoND is characterized by a stretch of conserved

residues (37ERLEFLGD44 in Aa-RNase III), which is known

as the RNase III signature motif and makes up a large part

of the active center.

Since its discovery in 1968 (Robertson et al., 1968), the

homodimeric Ec-RNase III has become the most extensively

studied member of the family. It can affect gene expression

in either of two ways: as a processing enzyme or as a binding

protein. As a processing enzyme, RNase III cleaves both nat-

ural and synthetic dsRNA into small duplex products averag-

ing 10–18 base pairs in length (Court, 1993; Dunn, 1982;

Robertson, 1982; Robertson and Dunn, 1975). As a binding

protein, RNase III binds and stabilizes certain RNAs, thus

suppressing the expression of certain genes (Calin-Jageman

and Nicholson, 2003; Court, 1993; Dasgupta et al., 1998;

Guarneros, 1988; Oppenheim et al., 1993). In vitro, both

Dicer and Ec-RNase III can be used to cleave long dsRNA,

producing small interfering RNA cocktails that are effective

mediators of gene silencing (Yang et al., 2002).

Previously, we reported three endoND structures of Aa-

RNase III with and without bound metal ions, which reveal

a symmetric endoND dimer with a ball-and-socket junction

at each end of the subunit interface, a catalytic valley that

can accommodate a dsRNA substrate, and a cluster of six

acidic side chains (E37, E40, D44, D107, and E110 from
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one subunit and E64 from the partner subunit, among which

E37, E40, and D44 are located in the signature motif) located

at each end of the valley (Blaszczyk et al., 2001). On the basis

of the structural and biochemical data, catalytic models were

proposed before the structure of a catalytic complex be-

came available. Among the six acidic side chains, E110

was proven to be essential for catalysis (Blaszczyk et al.,

2004; Dasgupta et al., 1998; Inada et al., 1989; Li and Nich-

olson, 1996). In addition, our in vivo data suggested that

E37, D44, and E64 are also essential, which led to our model

of compound active centers, each containing two different

RNA cleavage sites, D44/E110 and E37/E64 (Blaszczyk

et al., 2001). Further in vitro data supported the essential

role of D44 but not the roles of E37 and E64 (Lee et al.,

2004; Zhang et al., 2004), which led to the single-process-

ing-center model, containing two identical RNA cleavage

sites, D44/E110 (Zhang et al., 2004). We were puzzled about

the functional roles of E37 and E64 because the in vitro data

also indicated their involvement in catalysis although they are

not essential (Sun et al., 2004; Zhang et al., 2004). To estab-

lish the functional roles of these two side chains and to un-

derstand the mechanism of dsRNA processing by RNase

III enzymes, it is necessary to gain structural insights on the

details of catalytic complex. After determining five crystal

structures of Aa-RNase III�dsRNA in various noncatalytic

forms of the complex (Blaszczyk et al., 2004; Gan et al.,

2005), we succeeded in determining the crystal structure

of a catalytic complex. Here, we present the structure of

an RNase III-product complex and describe in detail the pro-

tein-RNA interactions that are responsible for the recognition

and binding of dsRNA, substrate specificity, and scissile-

bond selection.

RESULTS AND DISCUSSION

Although the E. coli enzyme is the most extensively studied

member of the RNase III family, structural information for

RNase III has thus far been restricted to enzymes from other

bacteria, especially A. aeolicus (Blaszczyk et al., 2001, 2004;

Gan et al., 2005). Accordingly, in the following sections, we

will use the amino acid residue numbers of Aa-RNase III un-

less otherwise stated. Residue numbers for Ec-RNase III can

be found in Blaszczyk et al. (2004), and those for Dicer can

be found in Zhang et al. (2004).

Aa-D44N, a Mutant RNase III with Greatly

Reduced Activity

In our effort to crystallize a catalytic complex of RNase III, we

focused on two mutant proteins, Aa-D44N and Aa-E110Q,

and succeeded in determining the crystal structure of Aa-

D44N with dsRNA bound in its catalytic valley.

Residues D44 (of the signature motif) and E110, located in

the active center of RNase III, are strictly conserved in all

members of the family (Blaszczyk et al., 2001). It was found

that the D44N mutant (Sun et al., 2004) had greatly reduced

RNA cleavage activities although its RNA binding affinity was

comparable to that of the wild-type enzyme; only after ex-

tended reaction times at high enzyme concentrations was
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a low level of catalytic activity observed (Sun et al., 2004).

Similar to the D44 mutant, the E110Q mutant had negligible

RNA cleavage activity but retained its RNA binding affinity;

however, E110Q did not show any catalytic activity over ex-

tended reaction time and at high protein concentrations (Sun

and Nicholson, 2001).

RNA 5, a Designed Substrate

In our previously reported RNase III�dsRNA structures

(Blaszczyk et al., 2004; Gan et al., 2005), four RNAs were

used: RNA 1 (50-GGCGCGCGCC-30), RNA 2 (50-CGAACUU

CGCG-30), RNA 3 (50-AAAUAUAUAUUU-30), and RNA 4

(50-CGCGAAUUCGCG-30). All four RNAs form self-comple-

mentary duplexes. In the crystal lattice, each of these RNA

duplexes stacks end to end as a pseudocontinuous helix.

To avoid this extended stacking, we designed a stem-loop

RNA molecule (RNA 5, Figure 1A) containing a four-base

loop (GCAA) that can prevent base stacking from that end.

RNA 5 was derived in part from mini-R1.1[WC] RNA (Nich-

olson, 1999), which was in turn derived from R1.1[WC]

RNA, a canonical substrate of Ec-RNase III (Zhang and Nich-

olson, 1997).

RNA 6, a Product of Aa-D44N-Catalyzed

RNA 5 Hydrolysis

We expected to crystallize a catalytic complex in the form of

either Aa-D44N�RNA 5 or Aa-E110Q�RNA 5, but what we

obtained in the crystal was Aa-D44N in complex with an

RNA cleavage product of RNA 5, which we refer to as

RNA 6 (Figures 1B and 1C). One must bear in mind that

the D44N mutant of Ec-RNase III retains a low level of RNA

cleavage activity at high enzyme concentration over an ex-

tended period of time (Sun et al., 2004) and that the Aa-

D44N-RNA 5 mixture was heated at 75ºC for 30 min before

the crystallization experiments were set up, which may be

within the temperature range of optimum activity for thermo-

philic A. aeolicus enzymes. Crystals appeared 3 months later

and reached the dimensions of 0.10� 0.10� 0.02 mm after

1 more month. The protein-product complex contains one

Aa-D44N dimer and two RNA 6 molecules, in which the

two RNA 6 molecules stack as an A form pseudocontinuous

duplex via complementary overlapping of two-base 30 over-

hangs. How the complex was formed is not clear, and it

could be formed through several different pathways. The

two RNA 6 molecules in the complex can also represent

the products from double-stranded cleavage of a longer

substrate. The overall structure of Aa-D44N�RNA 6 is de-

picted in Figure 2.

Overall Structure, a Symmetric Dicing Machine

The structure of Aa-D44N�RNA 6 was determined at 2.05 Å

resolution. The complex is composed of 2 Aa-D44N sub-

units (each containing 218 amino acid residues), 2 RNA 6

molecules (each containing 28 nucleotide residues), 2

Mg2+ ions, and 298 water oxygen atoms. The two N-terminal

amino acid residues and the C-terminal residue of the poly-

peptide chain were not observed. The entire structure of the

complex is highly symmetric.



Figure 1. Substrate (RNA 5) and a Product (RNA 6) of Aa-RNase III (D44N)

(A) Sequence and structure of RNA 5. Scissile bond is indicated with an arrow. Cyan rectangles indicate the distal box and proximal box (Zhang and Nich-

olson, 1997).

(B) Sequence and structure of RNA 6, one of the two products of Aa-D44N-catalyzed RNA 5 cleavage. The other product is a dinucleotide (50-AU-30).

(C) Stereoview showing the composite annealed omit map (2Fo � Fc, contoured at 1.0 s level) of RNA 6. The RNA is illustrated as stick models in atomic

color scheme (carbon in black, nitrogen in blue, oxygen in red, and phosphorus in pink), and the electron density map is shown as a green net.
The view in Figure 2A is along the 2-fold axis by which the

two Aa-D44N subunits and the two RNA 6 molecules are re-

lated. In each of the two cleavage sites, the 50 phosphate

group of the RNA 6 molecule is located in proximity to the

Mg2+ ion. The root-mean-square deviation (rmsd) for all Ca

atoms between the two polypeptide chains that comprise

the homodimer (a total of 218 target pairs) is 0.30 Å, and

the rmsd for all atoms between the two RNA 6 molecules

(594 target pairs) is 0.50 Å.

The view in Figure 2B is along the long axis of the RNA

pseudoduplex, showing the tight fit of the RNA to the protein.

The entire structure resembles a clamp that cradles the

dsRNA in the midst of the four domains. The total buried sur-

face area between the protein and the RNA is 5220 Å2, in-

cluding 1880 Å2 between the RNA and the two endoNDs

and 3340 Å2 between the RNA and the two dsRBDs, under-

scoring the dominant role of the dsRBDs in dsRNA bind-

ing. Dicer has two endoNDs and one dsRBD, with the two

endoNDs forming an intramolecular dimer (Zhang et al.,

2004). Compared to dimeric bacterial RNase III, one dsRBD

is not present in Dicer, suggesting that a single dsRBD may

be sufficient for RNase III function. Studies on a number of

dsRBD-containing proteins showed that a single dsRBD is

indeed sufficient to provide the protein with a clear specificity

for target selection (Chang and Ramos, 2005).

Structural Basis for Induced Fit

Recently, the full-length RNase III from Mycobacterium tu-

berculosis was crystallized and the structure determined at
2.1 Å resolution, but the position of dsRBD is totally dis-

ordered (Akey and Berger, 2005). In the five Aa-RNase

III-dsRNA structures we reported previously, the relative ori-

entations between the endoNDs and the dsRBDs vary dra-

matically (Blaszczyk et al., 2004; Gan et al., 2005). Compar-

ison between the structure of Aa-D44N�RNA 6 (Figure 3A)

with the structure of RNA-free Thermotoga maritima RNase

III (Tm-RNase III, Protein Data Bank [PDB] ID code 1O0W)

(Figure 3B) indicates a dramatic rotation and shift of the

dsRBD due to RNA binding. The structural basis for the in-

duced fit of RNase III is provided by the presence of a linker

(145EGRVKKD151) between the endoND and the dsRBD

(Figure 3C). Because both the endoND and the dsRBD are

relatively rigid, the flexibility of the linker is responsible for ma-

jor conformational changes within the molecule. Before any

structural information was available, genetic evidence indi-

cated that the linker segment was important. Residue

Q153 of Ec-RNase III is located in the middle of the linker

(Figure 3C). The Q153P substitution in Ec-RNase III abol-

ished RNA cleavage activity but retained dsRNA binding ac-

tivity (Inada and Nakamura, 1995). This residue is not con-

served, and in Aa-RNase III, the analogous residue is K149

(Figure 3C). In the crystal structure of Aa-D44N�RNA 6,

the side chain of K149 is disordered (Figure 3D). Perhaps

the significance of the Ec-RNase III Q153P mutation resides

in the mutational change to a Pro residue in the middle of the

linker, which may reduce the flexibility of the segment. Thus,

reorientation of the dsRBD�dsRNA structure may be in-

hibited in the mutant. On the other hand, it was shown that
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Figure 2. The Overall Structure of the Aa-D44N�RNA 6 Complex

(A) Stereoview of the symmetric structure of the product complex Aa-D44N�RNA 6. The two endoNDs are outlined with transparent surfaces. The protein is

illustrated as ribbon diagrams (helices as spirals, b strands as arrows, and loops as pipes) with the two subunits colored in cyan and yellow. The signature

motif is highlighted in red, the Mg2+ ions in purple, and the two RNA 6 molecules in blue and green.

(B) Stereoview of Aa-D44N�RNA 6 along the long axis of the RNA pseudoduplex. In this view, the dsRBD is also outlined with transparent surfaces.
extension of the linker from 9 to 20 amino acids in Ec-RNase

III does not affect cleavage-site selection (Conrad et al.,

2001).

Among the 7 residues in the linker, the last one is a highly

conserved aspartate (Figure 3C). It was found that the Ec-

RNase III (D155E) mutant did not bind dsRNA (Inada and Na-

kamura, 1995), suggesting that a very precise positioning of

the carboxylic-acid functional group is important for RNA

binding. In the current structure, the distance between the

aspartate side chain and the bound RNA is �3.2 Å. There-

fore, the larger glutamate side chain at position 155 likely
358 Cell 124, 355–366, January 27, 2006 ª2006 Elsevier Inc.
creates steric hindrance against the recognition and binding

of dsRNA by the dsRBD. We have observed, in all of our Aa-

RNase III-dsRNA structures thus far determined, that the

side chain of D151 forms a hydrogen bond with the side

chain of highly conserved residue T154, and the T154 side

chain forms a hydrogen bond with an O20 hydroxyl (Fig-

ure 3E). It appears that T154 is required for RNA recognition

and that D151 is responsible for keeping the Thr side chain in

the proper orientation. In addition, the interaction between

D151 and T154 also forms the N-terminal cap of the first

a helix of the dsRBD and therefore stabilizes this helix. As



Figure 3. The Flexible Linker and In-

duced Fit during dsRNA Binding

(A and B) Schematic illustration of the Aa-

D44N�RNA 6 structure (A) showing a dramatic

rotation and shift of dsRBD with respect to the

endoND when compared to the RNA-free Tm-

RNase III structure (PDB ID code 1O0W) (B).

The endoNDs are illustrated as molecular surface

with positive and negative potentials indicated by

blue and red colors, respectively. The dsRBDs

are shown as Ca backbone worms in white.

(C) Amino acid sequences of Aa-RNase III, Tm-

RNase III, and Ec-RNase III in the linker and

nearby regions. Color shading indicates second-

ary-structure elements (helices in green, b strands

in cyan) and two single-mutation sites (in red) in

the linker region: 1, rnc10 (Ec-Q153P) and 2,

rnc7 (Ec-D155E) (Inada and Nakamura, 1995).

(D) The structure of the 7 residue linker outlined

with annealed omit map (2Fo � Fc contoured at

1.0 s) in the Aa-D44N�RNA 6 structure.

(E) Residue D151 forms a hydrogen bond with

T154 that in turn forms a hydrogen bond to an

O20 hydroxyl of RNA. Amino acid residues are

shown as ball-and-stick models, the electron

density map as a green net, and the Ca trace as

a gray worm.
an RNA binding motif, the first helix of the dsRBD plays an

important role in the recognition and binding of dsRNA.

The Four RNA Binding Motifs in RNase III

The binding of dsRNA by RNase III in all observed forms of

protein-RNA complex is dominated by the dsRBD. However,

both the dsRBD and the endoND contribute to substrate

specificity. The Aa-D44N�RNA 6 structure provides the op-

portunity to identify RNA binding motifs (RBMs; Figure 4A) in

RNase III and protein-interacting boxes in the dsRNA

(Figure 5A), which define the protein-RNA interactions in

detail.

RBM 1 is the first a helix of the dsRBD (Figure 3C), in which

residues T154, Q161, Q157, and E158 each form a hydro-

gen bond with an O20 hydroxyl of RNA (Figure 4B). There

are three more hydrogen bonds between amino acid side

chains and the O20 hydroxyls of RNA, one for each of the re-

maining RBMs. Therefore, although all four RBMs are impor-

tant, RBM 1 appears to be the most important for the recog-

nition and binding of dsRNA. In the catalytic complex, RBM 1

interacts with the proximal box of RNA (Zhang and Nichol-

son, 1997), which is only 1 base pair from the scissile

bond (Figure 5A). Therefore, RBM 1 may also play a role in

organizing the cleavage-site structure.
RBM 2 is the loop between b strands 1 and 2 of the dsRBD

(residues 177–182; Blaszczyk et al., 2001). It fits into the mi-

nor groove of bound dsRNA but flips and points in the oppo-

site direction when no RNA is bound (Figure 4C). RBM 2 in-

teracts with two base pairs of RNA between the proximal box

and distal box (Zhang and Nicholson, 1997). One hydrogen

bond is formed between an O20 hydroxyl and the side chain

of RBM 2 residue H180. We refer to these two base pairs as

the ‘‘middle box’’ (Figure 5A).

RBM 3 is the N-terminal portion of a helix 4 (residues 64–

68; Blaszczyk et al., 2001). Residues E64 and S68 are in-

volved in dsRNA binding. Without bound substrate, a hydro-

gen bond is formed between the two side chains (Blaszczyk

et al., 2001). Upon RNA binding, S68 forms a hydrogen bond

with the O20 hydroxyl of R 0, the nucleotide residue in the

cleavage site, and the side chain of E64 protrudes into the

major groove and forms a hydrogen bond with a phosphate

oxygen of nucleotide residue R+1 (Figure 4D). Upon RNA

binding, no noticeable conformational change is observed

for S68, whereas the side chain of E64 undergoes significant

changes. The interactions between RBM 3 and nucleotide

residues R 0 and R+1 determine the scissile bond and

may also help optimize the cleavage-site structure.

RBM 4 is the loop between a helices 5 and 6 in the

endoND (residues 92–102; Blaszczyk et al., 2001). Projecting
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Figure 4. RNA Binding Motifs and Sub-

strate Specificity of RNase III

(A) Stereoview showing the location of the four

RNA binding motifs (RBMs). Only one subunit of

RNase III is shown for clarity. The dsRNA is illus-

trated as a molecular surface model and the pro-

tein as a backbone worm with the linker between

the endoND and dsRBD and the four RBMs high-

lighted in red and blue, respectively.

(B) Dotted lines indicate hydrogen bonds be-

tween RBM 1 and the O20 hydroxyls (in black)

or between RBM 1 and the bases (in gray). Res-

idues are represented by ball-and-stick models in

atomic color scheme (carbon in black, nitrogen in

blue, oxygen in red, and phosphorus in purple).

Also shown are the backbones of a8 and the

dsRNA.

(C) Ca-based alignment between a dsRBD in the

Aa-D44N�RNA 6 complex (in blue) and a dsRBD

in RNA-free Tm-RNase III (in orange; PDB acces-

sion code 1O0W).

(D) Ca-based alignment between an RBM 3 in

the Aa-D44N�RNA 6 complex (in blue) and an

RBM 3 in the Aa-endoND�Mg2+ structure (in or-

ange; Blaszczyk et al., 2004).

(E) Ca-based alignment between one endoND

in the Aa-D44N�RNA 6 complex (in blue) and

one endoND in the noncatalytic complex Aa-

E110K�RNA 1 (in orange; Blaszczyk et al., 2004).
into the minor groove of dsRNA (Figure 4E), RBM 4 interacts

with the distal box (Figure 5A). Between an O20 hydroxyl of

the RNA and the side chain of R97, a hydrogen bond is

formed. The distance between RBMs 3 and 4 is fixed in

the endoND dimer. Thus, RBM 4 binding could also help de-

termine where RBM 3 binds and could play a role in selecting

the scissile bond.

The four RBMs collectively recognize and bind a dsRNA

substrate by forming seven hydrogen bonds with O20 hy-

droxyls and projecting two loops (RBMs 2 and 4) into the mi-

nor groove. Therefore, each RNase III dimer uses 14 hydro-

gen bonds to recognize the O20 hydroxyls and 4 loops to

recognize the minor groove of a dsRNA substrate. In addi-

tion, 49 hydrogen bonds and 11 salt bridges are formed di-

rectly between the protein and the RNA, and 23 water mol-

ecules are found to bridge the interactions between amino
360 Cell 124, 355–366, January 27, 2006 ª2006 Elsevier Inc.
acid and nucleotide residues with 72 hydrogen bonds. Ap-

proximately two-thirds of these interactions are between

the dsRBDs and the RNA, in agreement with the results of

buried surface analysis.

A plausible pathway for the formation of a substrate com-

plex may include three steps: (1) One dsRBD binds to

a dsRNA via RBMs 1 and 2. (2) This dsRBD brings the

bound RNA in proximity to the endoNDs (or the endoNDs

approach the bound RNA) for substrate recognition. (3)

Once the dsRNA is recognized by RBMs 3 and 4, the sec-

ond dsRBD binds to and locks the substrate in position. Al-

though the assembly of a productive complex does not nec-

essarily occur by this pathway, the protein-RNA interactions

observed in the complex indicate that RBMs 1 and 2 play

dominant roles in the recognition and binding of dsRNA,

whereas RBMs 3 and 4 are dominant in substrate specificity

genbank:1O0W


Figure 5. Schematic Representation of

RNase III-dsRNA Interactions

(A) The RNase III-dsRNA interactions observed in

the structure of Aa-D44N�RNA 6 are schemati-

cally illustrated. The dimeric protein is shown as

two rectangles and is labeled as ‘‘Subunit 1’’

and ‘‘Subunit 2,’’ and the four RBMs are shown

as ellipsoids. The substrate is represented by

a stem-loop dsRNA with a 24 base pair double-

stranded region. The scissile bonds are indicated

with arrows, and the protein-interacting boxes in

the dsRNA (proximal, middle, and distal boxes)

are outlined with rectangles and indicated with

one-letter abbreviations for clarity. The nucleo-

tide residues in the cleavage sites are numbered

‘‘R 0,’’ and the rest are numbered according

to the polarity of the RNA strand. Subunit 1 of

RNase III and associated RNA strand are outlined

in blue; subunit 2 and associated RNA strand are

indicated in red. RNA 5 and minimal dsRNA sub-

strate are indicated with dashed lines. RBMs 1, 2,

and 4 interact with the proximal, middle, and dis-

tal box of the dsRNA, respectively, whereas RBM

3 interacts with nucleotide residues R 0 and R+1

of a single RNA strand.

(B) Dicer-dsRNA interactions. In this panel, the

left rectangle represents endoND 1 (in blue) and

the right rectangle represents endoND 2 and

dsRBD (in red) of Dicer.
and scissile-bond selection. Dicer has two endoNDs, which

dimerize intramolecularly (Zhang et al., 2004), but only one

dsRBD, which appears to be sufficient for the recognition

and binding of dsRNA (Figure 5B). Note that RBMs 1 and

2 do not discriminate against nonsubstrate dsRNA; it was

shown that Rnt1p binds to an RNA that has a 5 base pair

stem of only one helical turn (Lamontagne et al., 2003). It

is RBMs 3 and 4 that discriminate against nonsubstrate

dsRNA. A truncated form of Ec-RNase III without dsRBD

(i.e., without RBMs 1 and 2) was shown to accurately cleave

certain processing substrates in vitro (Sun et al., 2001); in

Mycoplasma genitalium and Mycoplasma pneumoniae, the

RNase III dose not have a dsRBD (Tian et al., 2004). For lon-

ger dsRNA substrates of at least 22 base pairs, RBMs 3 and

4 in both subunits function together, recognizing the sub-

strate and determining the scissile bonds on both strands

of the substrate (Figure 5A). For shorter dsRNAs with one

scissile bond, such as RNA 5, substrate recognition and

scissile-bond selection can be achieved by a mixed set of

RBMs 3 and 4, i.e., RBM 3 from one subunit and RBM 4

from the partner subunit (Figure 5A).

An Aa-RNase III dimer has two sets of four RBMs. For the

cleavage of shorter substrates such as RNA 5, a mixed set of

four RBMs is involved, of which RBMs 1 and 3 are from one

subunit while RBMs 2 and 4 are from the partner subunit

(Figure 5A). Although the amino acid sequences of the

RBMs may not be conserved, we believe that the pattern

of interactions between the four RBMs in RNase III and the

three boxes in the dsRNA is conserved. For example, the hy-

drogen bonds from RBMs 1 and 2 to the O20 hydroxyl groups

of dsRNA were first identified in the crystal structure of the
second dsRBD of Xenopus laevis RNA binding protein A in

complex with dsRNA (Ryter and Schultz, 1998) and were

later also observed for several other dsRNA binding proteins

(Chang and Ramos, 2005; Tian et al., 2004).

Although RNase III is able to bind a dsRNA consisting of

only one helical turn, the normal substrate length is two he-

lical turns of A form dsRNA (Conrad and Rauhut, 2002;

Court, 1993). RNA 5, the stem-loop substrate containing

a 13 base pair stem, is cleaved by Aa-D44N two bases

from its 50 end (Figures 1A and 1B and Figure 5A). It was

also shown that Rnt1p is able to cleave one base from the

50 end of a substrate (Lamontagne et al., 2003). Assuming

that bacterial RNases III can do the same, their smallest

dsRNA substrate should contain 11 base pairs to interact

with a mixed set of RBM 3 and RBM 4 for substrate recog-

nition and scissile-bond selection (Figure 5A).

The Role of Dimerization in RNase III Function

The catalytic valley in the RNase III dimer is approximately 50

Å long and 20 Å wide. In the catalytic valley are located two

clusters of six acidic side chains (E37, E40, D44, D107, and

E110 from one subunit and E64 from the partner subunit,

among which E37, E40, and D44 are signature motif resi-

dues). Each cluster coordinates to a metal ion, and the dis-

tance between the two metal ions is 22.4 Å (Blaszczyk

et al., 2001). Residue E110 was proven to be essential for

catalysis (Blaszczyk et al., 2004; Dasgupta et al., 1998; In-

ada et al., 1989; Li and Nicholson, 1996). Our in vivo data

suggested that E37, D44, and E64 are also essential

(Blaszczyk et al., 2001). Further in vitro data supported the

essential role of D44 but not the roles of E37 and E64 (Lee
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et al., 2004; Zhang et al., 2004). Lee and coworkers found

that mutation of these two residues in the first endoND of

Drosophila Dicer does not inactivate the enzyme (Lee

et al., 2004), while Zhang and coworkers discovered that

the single Glu-to-Ala mutation at each of the two positions

in Ec-RNase III or the first endoND of human Dicer produces

a protein that has catalytic activity comparable to the wild-

type but increased KM values for the substrate (Zhang

et al., 2004). Recently, Sun and coworkers found that the

single Glu-to-Ala mutants at these positions in Ec-RNase III

exhibit Mg2+-dependent dsRNA cleavage activities: At the

physiological level (1 mM Mg2+), the two single mutants ex-

hibit catalytic activities that are about 18% that of the wild-

type, whereas with 10 mM Mg2+, both mutants show ap-

proximately 80% catalytic activity (Sun et al., 2004). The

functional roles of these two side chains remained puzzling

until we determined the present structure. On the basis of

our new structural data, we conclude that E37 is involved

in protein dimerization only and that E64, as an RBM 3 res-

idue, is involved in substrate recognition and scissile-bond

selection.

The crystal structure of the product complex indicates that

a single RNA cleavage event occurs on each strand of the

RNA within each cleavage site (Figure 2A and Figure 5).

For each cleavage event, residues S68 and E64 (RBM 3)

from one subunit select the scissile bond (Figure 5A), and

the hydrolysis of the scissile bond is carried out by conserved

residues E40, D44, D107, and E110 from the partner sub-

unit. Hence, dimerization of the endoNDs is essential for

RNase III function. Also, dimerization makes it possible for

the enzyme to recognize shorter substrates with a mixed

set of four RBMs (Figure 5A).

The Roles of Conserved Amino Acid Residues

and Cofactors in the Cleavage Site

The RNase III-catalyzed dsRNA cleavage is Mg2+ ion depen-

dent and probably proceeds in a single step via an SN2 (bi-

molecular nucleophilic substitution) type mechanism

(Campbell et al., 2002; Dunn, 1982; Li and Nicholson,

1996; Robertson et al., 1968; Sun and Nicholson, 2001).

The Aa-D44N�RNA 6 structure reveals that each RNA cleav-

age site is composed of amino acid residues E40, D44,

D107, and E110; nucleotide residues R-1, R 0, and R+1;

the Mg2+ ion; and three water molecules (Figure 6A). The

Mg2+ ion coordinates with three acidic side chains (E40,

D107, and E110) and the three water molecules (1, 2, and

3), assuming the geometry of an octahedron. In addition to

interacting with the metal ion, E110 is also hydrogen bonded

to water 2 that, together with water 1, interacts with the 50

phosphate of RNA 6 (Figure 6A). The coordination of Mg2+

in the product complex is slightly different from the one we

previously observed in the RNA-free structures (Blaszczyk

et al., 2001, 2004). All components of the Mg2+ coordination

adjust slightly upon RNA binding. Water molecules 2 and 3

undergo the most significant adjustment, such that the plane

defined by Mg2+ and these two water molecules appears to

swing around the Mg2+ ion back and forth, in concert with

the catalytic cycle, by �40º between the RNA-free and
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RNA bound states (Figure 6B). Comparatively, the Mg2+ oc-

tahedron in the product complex is more distorted. Water

molecule 2 always bridges the interaction between the metal

ion and the D44 side chain, whereas water 3 is hydrogen

bonded to the E110 side chain only in the RNA-free state

(Figure 6B). Least affected upon RNA binding are the side

chains of E40 and D107; neither is located in proximity to

the scissile bond, in agreement with the previously proposed

roles of E40 and D107 in metal binding (Sun et al., 2004).

However, there is a stringent functional requirement for

both the charge and size of the D44 and E110 side chains,

which, together with their locations and their relationship

with other components of the cleavage site, indicates the in-

volvement of a second metal ion in the mechanism of RNase

III catalysis. The structural data on functionally related en-

zymes, especially RNase H, suggests a position for the sec-

ond metal ion.

RNase III enzymes belong to a superfamily of polynucleo-

tidyl transferases that includes RNases, DNases, and trans-

posases. Two-metal-ion catalysis was established for both

Tn5 transposase (Davies et al., 2000; Steiniger-White

et al., 2004) and RNase H (Nowotny et al., 2005) and was

suggested for RNase III on the basis of biochemical data

(Sun et al., 2005). Tn5 is specific for DNAs, and no water is

involved in catalysis; RNase H is specific for RNA-DNA het-

eroduplexes, and two water molecules are involved in catal-

ysis (Nowotny et al., 2005). Although RNase H is specific for

RNA/DNA hybrid while RNase III is specific for dsRNA, the

catalytic events for the two enzymes are the same (i.e.,

metal-dependent and sequence-nonspecific hydrolysis of

an RNA phosphodiester bond). Therefore, the cleavage

site of RNase III should resemble that of RNase H (Figure 7).

In the cleavage site of RNase H, four conserved acidic side

chains (D71, E109, D132, and D192) coordinate with two

Mg2+ ions, designated A and B (Nowotny et al., 2005). Metal

ion A is six-coordinated with D71; D192; the pro-Sp oxygen

of the scissile-bond phosphate; and water molecules 1, 2,

and 3, whereas metal B is five-coordinated with D132,

D71, E109, O30 hydroxyl of the scissile bond, and the pro-

Sp oxygen of the scissile-bond phosphate. Metal A-coordi-

nated water 3 is also hydrogen bonded to the carboxylate

group of D132 (Figure 7). The coordination octahedron of

the Mg2+ ion in RNase III can be aligned with that of metal

A in RNase H such that residues E110 and D107 in RNase

III superimpose with residues D71 and D192 in RNase H, re-

spectively, and that two of the three water molecules, 1 and

3, superimpose (Figure 7). This alignment reveals two major

differences between the two cleavage sites. First, although

the two sites share the Asp-water-metal interaction, the spa-

tial arrangement of the Asp-water-metal structure is differ-

ent, one being an approximate mirror image of the other.

Second, metal B in RNase H coordinates with one more

acidic side chain (E109), whereas it is metal A in RNase III

that coordinates with an extra acidic side chain (E40). This

comparison also suggests that a conformational change

takes place in the RNA during catalysis. There is a difference

of�3.0 Å in the position of the scissile-bond region between

the substrate in the RNase H structure and the product in the



Figure 6. Cleavage-Site Structure of

RNase III with and without Bound RNA

(A) Stereoview showing the cleavage site ob-

served in the Aa-D44N�RNA 6 structure. Resi-

dues are shown as ball-and-stick models in

atomic color scheme (carbon in black, nitrogen

in blue, oxygen in red, phosphorus in purple,

and magnesium in gray) outlined with annealed

omit map in green (2Fo � Fc contoured at 1.0 s).

(B) Stereoview showing the superposition of the

cleavage site in Aa-D44N�RNA 6 (in blue) and

in Aa-endoND�Mg2+ (in red; PDB ID code

1RC5; Blaszczyk et al., 2004). The coordination

bonds are shown as solid lines and hydrogen

bonds as dashed lines.
RNase III structure, which is likely to be the consequence of

the presence or absence of the second metal ion (Figure 7).

Accordingly, the product of RNase H should assume the

product position observed in the RNase III structure when

metal B is released, and the substrate of RNase III should

adopt the substrate position seen in the RNase H structure

if a second metal ion is indeed involved. The structures of

both the RNase III-substrate complex and the RNase

H-product complex remain to be determined.

Conclusions

RNA 5, a 30 base stem-loop RNA of the sequence 50-AU

AAAGGUCAUUCGCAAGAGUGGCCUUUAU-30, is cleaved

by Aa-RNase III (D44N). The products of the reaction include

a dinucleotide 50-AU-30 and a 28 base stem-loop RNA with

a two-base 30 overhang (RNA 6). Two RNA 6 molecules
and a dimeric Aa-D44N molecule form a product complex,

which represents the first catalytic complex of RNase III

with dsRNA. Induced fit, facilitated by a flexible linker be-

tween the endoND and the dsRBD, occurs in protein-RNA

recognition. The overall structure of the complex is highly

symmetric, with the protein-RNA interactions mediated by

four RNA binding motifs (RBMs) in RNase III and three pro-

tein-interacting boxes in dsRNA. RNase III binds to both sub-

strate and nonsubstrate dsRNAs. While RBMs 1 and 2 in the

dsRBD are responsible for dsRNA recognition and binding,

RBMs 3 and 4 in the endoND are responsible for substrate

recognition and scissile-bond selection. Dimerization of

endoNDs is essential for RNase III function in that residues

from one subunit (RBM 3 residues) are involved in the selec-

tion of the scissile bond, while those from the partner subunit

(strictly conserved residues) are involved in the cleavage
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Figure 7. Cleavage-Site Structure of

RNase III and RNase H

Stereoview showing the superposition of the

cleavage site in Aa-D44N�RNA 6 (in blue) and

in RNase H�RNA/DNA (in orange; Nowotny

et al., 2005). Both amino acid and nucleotide res-

idues are shown as stick models. Metal ions and

water molecules are shown as spheres. The co-

ordination bonds of Mg2+ are shown as solid lines

and hydrogen bonds as dashed lines.
chemistry. The available structural and biochemical data

suggest the requirement of a second divalent cation in the

hydrolysis of each RNA strand by RNase III.

EXPERIMENTAL PROCEDURES

Construction of the Aa-RNase III (D44N) Expression Vector

The plasmid expression vector that was used to produce the Aa-D44N

mutant was constructed by overlap extension PCR (Ho et al., 1989)

and Gateway recombinational cloning (Invitrogen, Carlsbad, CA). A previ-

ously described Gateway entry clone of the open reading frame encoding

full-length, wild-type Aa-RNase III was used as the template for PCR

(Blaszczyk et al., 2004). Four oligodeoxyribonucleotides were used as

PCR primers: (A) 50-GGGGACAAGTTTGTACAAAAAAGCAGGCTTTAAG

AAGGAGATATACATATGAAAATGTTGGAGCAACTTG-30, (B) 50-GGGG

ACCACTTTGTACAAGAAAGCTGGGTTATTATTCTGATTCCTCCAGTAAT

TT-30, (C) 50-CACGAGGGCATTGCCGAGGAACTC-30, and (D) 50-GAGTT

CCTCGGCAATGCCCTCGTG-30. First, two separate PCRs were per-

formed using primers A and C and primers B and D, respectively. The re-

sulting PCR amplicons were combined and used as the template for an-

other PCR with primers A and B. The final PCR amplicon was recombined

into the entry vector pDONR201 to yield pBA1681, and then the nucleo-

tide sequence of the entire ORF was confirmed. The ORF encoding the

D44N mutant was then recombined into pDEST-42 (Invitrogen, Carlsbad,

CA), a derivative of pET11 (Novagen, Madison, WI) to create the expres-

sion vector pBA1682.

Protein Expression and Purification

The full-length Aa-D44N was overproduced in E. coli BL21(DE3) Codon-

Plus-RIL cells (Stratagene, La Jolla, CA) and purified as described for the

Aa-E110Q mutant (Gan et al., 2005). The final product, in 25 mM Tris (pH

7.2) 300 mM NaCl buffer, was concentrated to 16.8 mg/ml (determined

spectrophotometrically using a molar extinction coefficient of 24,180

M�1cm�1). Aliquots were flash frozen in liquid nitrogen and stored at

�80ºC until use. The Aa-D44N mutant was judged to be >95% pure by

SDS-PAGE. The molecular weight was confirmed by electrospray mass

spectrometry.

RNA 5

Substrate RNA 5 (30-mer, 50-AUAAAGGUCAUUCGCAAGAGUGGCCU

UUAU-30) was purchased from Dharmacon RNA Technologies (Chicago)
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and dissolved at 2.0 mM concentration in 25 mM Tris-HCl (pH 7.2) buffer

containing 0.1 M NaCl.

Crystallization and X-Ray Diffraction Data Collection

Prior to crystallization, the protein solution consisting of 9.3 mg/ml Aa-

D44N, 0.8 mM RNA 5, 40 mM MgCl2, and 280 mM NaCl in 25 mM

Tris-HCl (pH 7.2) was incubated at 75ºC for 30 min and then cooled

down slowly to room temperature.

The crystallization screening was carried out with the sitting-drop vapor

diffusion method at 19ºC ± 1ºC. Block-shaped single crystals (space

group P21; unit cell dimensions a = 63.8, b = 51.0, c = 113.8 Å, and

b = 104.5º) grew 3 months later from the drop containing 0.4 ml protein

solution and 0.2 ml reservoir solution (0.2 M ammonium sulfate, 25%

w/v PEG 3350 in 0.1 M HEPES [pH 7.5]) and reached the dimensions

of 0.10 � 0.10 � 0.02 mm after 1 more month. The X-ray diffraction

data were collected at the Southeast Regional Collaborative Access

Team (SER-CAT) insertion device beamline 22 (22-ID) equipped with

a Bruker Protum-300 CCD detector at the Advanced Photon Source, Ar-

gonne National Laboratory. Data processing was carried out with the

HKL2000 program suite (Otwinowski and Minor, 1997). The complete-

ness, redundancy, Rmerge (defined as Sj(I � <I>)j/S(I), where I is the ob-

served intensity), and I/s(I) values for the entire data set (30.0–2.05 Å)

are 90.6%, 2.5, 0.061, and 13.3, respectively, and the four values for

the highest resolution shell (2.12–2.05 Å) are 55.2%, 1.6, 0.411, and

1.6, respectively.

Structure Solution and Refinement

The structure of Aa-D44N�RNA 6 was solved with the molecular replace-

ment program PHASER (McCoy et al., 2005; Reed, 2000; Storoni et al.,

2004). Four structures, including Aa-E110K�RNA 1 (Blaszczyk et al.,

2004), Aa-E110Q�RNA 2, Aa-RNase III�RNA 3 and Aa-RNase III�RNA

4 (Gan et al., 2005), were used to derive the search model ensembles

for the endoND and the dsRBD. The MR solution, containing two

endoNDs and two dsRBDs, was subjected to rigid-body refinement, en-

ergy minimization, and grouped B factor refinement followed by a differ-

ence Fourier synthesis, which revealed the position of RNA 6.

The structure was refined with the program CNS (Brünger et al., 1998)

on a Silicon Graphics Fuel workstation. A total of 1932 (5%) reflections

were randomly selected for crossvalidation (Rfree). Bulk solvent correction

was employed. During the refinement, the 2Fo� Fc and Fo� Fc electron-

density maps were regularly calculated and examined. Solvent



molecules, as peaks R3s on the Fo � Fc map with reasonable hydrogen

bond network, were included as water oxygen atoms at the later stage of

the refinement. Upon completion, the entire structure was verified with

the composite annealed omit map (Brünger et al., 1998). The final struc-

ture (crystallographic R = 0.206, Rfree = 0.257) was assessed with

PROCHECK (Laskowski et al., 1993), and 92.1% of the 4/c values

were found in the most favored regions on the Ramachandran plot. The

rmsds for bond lengths and angle distances are 0.005 and 1.1 Å, respec-

tively, and the estimated coordinate error is 0.27 Å. All graphics work was

carried out using O (Jones et al., 1991). Illustrations were prepared with

program packages MOLSCRIPT (Kraulis, 1991), BOBSCRIPT (Esnouf,

1997), RASTER3D (Merritt and Bacon, 1997), and GRASP (Nicholls

et al., 1991).
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