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Phase Determination Using Halide Ions

Miroslawa Dauter and Zbigniew Dauter

Summary
A short soak of protein crystals in cryosolution containing bromides or iodides leads to incor-

poration of these ions into the ordered solvent shell around the protein surface. The halide ions
display significant anomalous signal, bromides in the vicinity of the absorption edge at 0.92 Å,
and iodides at longer wavelengths, e.g., provided by the copper sources. Bromides can, therefore,
be used through multiwavelength anomalous diffraction or single-wavelength anomalous diffrac-
tion (SAD) techniques and iodides through SAD or multiple isomorphous replacement (MIRAS)
phasing. The halide cryosoaking approach involves very little preparative effort and offers a rapid
and simple way of solving novel protein crystal structures.

Key Words: Anomalous scattering; MAD; SAD; phasing; halides; bromides; iodides.

1. Introduction
The idea of introducing halide ions to protein crystals originated from the

observation that in the crystals of lysozyme, obtained from the standard solu-
tion containing 1 M of NaCl, several chloride ions reside in the ordered solvent
region around the protein molecule (1). Chlorine is a relatively light element
and, although it has sometimes been used as a vehicle for phasing (2–4), its
heavier analogs, bromine and iodine, are much better suited as anomalously
scattering heavy atoms for phasing crystal structures (5). Subsequent trials con-
firmed that heavier halides, bromides and iodides, can also be introduced to pro-
tein crystals, if their salts are present in the crystallization medium (6) or in the
cryoprotecting solution (7,8) and this approach has been proposed as one of the
general methods of solving protein crystal structures (9). A number of novel
protein structures have recently been solved by this approach, and some exam-
ples are listed in Table 1.
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Both bromine and iodine are known as useful elements for heavy-atom
derivatization of macromolecules. In particular, bromouracil is almost isostruc-
tural with thymine, and has often been used for multiwavelength anomalous
diffraction (MAD) phasing of crystal structures of nucleotides (5), in analogy
to the role of selenomethionine in MAD phasing of protein crystals (see
Chapter 5 of volume 1). Bromine has one electron more than selenium, and its
anomalous scattering properties are similar with an X-ray absorption edge at
0.92 Å (selenium at 0.98 Å), easily achievable at most MAD-capable synchro-
tron beam lines. Iodine has for a long time been used as a classical heavy atom
for multiple isomorphous replacement (MIR) experiments, e.g., after iodination
of tyrosines with N-iodosuccinimide (10). Its X-ray absorption edges are not
easily accessible, but iodine with its 53 electrons displays the anomalous scat-
tering effect of about seven electron units at the Cu Kα wavelength of 1.54 Å.

2. Materials
The only material necessary after crystals of the native protein have been

obtained is the halide (bromide or iodide) salt of alkali metal, lithium, sodium,
or potassium. A variation of the halide-soaking approach has been proposed
(11,12) where cesium or rubidium halides were used, providing an additional
anomalous signal from these two cations, also bound at the protein surface (see
Note 1). Another proposed variation involves triiodides (12,13), requiring ele-
mental iodine dissolved in KI. 

3. Methods
3.1. Soaking Procedure

The soaking procedure is very simple and consists of submerging the native
crystal for a short time in the mother liquor containing simultaneously both a
cryoprotectant and an appropriate halide salt, before freezing it for diffraction
data collection.

The halide ions diffuse into protein crystals very quickly. Experiments with
variable soaking times have shown that soaking times as short as 10–15 s are
sufficient. Longer soaking times may degrade the crystal diffraction power, but
sometimes led to crystalline phase transition (see Note 2), or actually extended
the resolution limit of diffraction (14).

The concentration of salt in the soaking solution plays a more important role
than a prolonged soaking time. A high halide concentration increases the num-
ber of sites and their occupancy. However, not all crystals tolerate high con-
centrations (up to 1 M) of halide salts and their crystalline order may rapidly
deteriorate. The optimal concentration can only be evaluated empirically. If the
crystals visibly crack or shatter when observed under the microscope, or if the
initial diffraction image shows signs of significant deterioration, the concentra-
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tion of halide salt in the cryosolution should be diminished. The first trials can
be performed with 1 M concentration, but successful phasing has been obtained
with salts diluted to 0.2 M. The triiodide soaks require much more diluted solu-
tions, in the order of 10–20 mM of KI3 (12).

It may be advantageous to preserve the content and concentration of the ini-
tial mother liquor and add the measured amount of the halide in the form of a
solid salt. If the crystallization liquor contains a high concentration of another
salt, such as ammonium sulfate, it may be beneficial to substitute part of that
salt with a halide, preserving the overall ionic strength of the solution and
decreasing the adverse competitive effect of other anions.

Some salts at very high concentration may serve as cryoprotectants (15) and
it may be worth checking whether the crystal can be successfully frozen if the
concentration of halide salt is increased to greater than 2 M.

3.2. Phasing

In general, the structure solution of diffraction data from halide-soaked crys-
tals may proceed along well-established protocols for utilization of the anom-
alous signal in MAD, single-wavelength anomalous diffraction (SAD), or
MIRAS techniques, and any of the suitable programs can be used. However, in
contrast to the popular MAD approach based on selenomethionines, the num-
ber of identifiable anomalous scatterer sites cannot be predicted. The halide-
soaked crystals always have a large number of sites with variable occupancies,
but only those sites with significant occupancy are useful for the evaluation of
protein phases. In general, the number of useful sites is roughly proportional to
the surface area of the protein molecule, but other factors (see Note 3) obvi-
ously play important roles.

The anomalous signal of bromides can only be utilized if diffraction data are
collected at the synchrotron beam line, where the X-ray wavelength can be
adjusted to the vicinity of the Kα absorption edge of bromine (0.92 Å). The flu-
orescence spectrum recorded from the crystal soaked in the bromide salt will
always show the Br Kα absorption edge, resulting from the excess of bromides
in the cryosolution, regardless of the number of bound bromide sites. The pres-
ence of bound bromides (or iodides) can be confirmed from the clear anom-
alous signal present in the diffraction data. The anomalous signal of iodine is
more pronounced at longer wavelengths; its f′′ contribution at the Cu Kα wave-
length is about seven electron units, so that it can be used with data collected at
the laboratory X-ray sources, not only at synchrotron facilities.

3.2.1. Location of Anomalous Scatterers Sites

As usual in all methods based on heavy or anomalously scattering atoms, the
first step in crystal structure solution is the location of these atoms, i.e., halide
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ions in the approach discussed here. This can be done with either Patterson or
direct methods, utilizing the anomalous or isomorphous (dispersive) differ-
ences, as appropriate (see also Chapters 10–12). If only single-wavelength data
are available, the anomalous (Bijvoet) differences have to be used. If in addi-
tion a native dataset exists, the classic SIRAS (single isomorphous replacement
with anomalous scattering) method can be applied, and the halide sites can be
identified from the anomalous or isomorphous differences. If MAD data are
collected on bromide-soaked crystal, various combinations of anomalous and
dispersive differences can be utilized, as well as the properly estimated diffrac-
tion contributions of anomalous atoms, FA.

Because the number of expected halide sites cannot be predicted, they can be
selected, e.g., by comparing peaks in several putative direct methods solutions.
Equivalent sites (see Note 4) present in several independent direct methods tri-
als can be accepted with confidence. Usually after the first round of phasing it
is possible to identify more sites from the appropriate (anomalous or isomor-
phous) difference Fourier synthesis. In practice, weaker sites can be iteratively
added as long as they increase the phasing power and enhance the inter-
pretability of the resulting electron density maps.

3.2.2. Evaluation of Protein Phases

After a number of halide sites are identified, it is possible to evaluate the pro-
tein phases, perform phase improvement (solvent flattening and related density
modification procedures), and calculate the initial electron density map. This
step can be performed separately, or can be a part of the integrated software sys-
tem, such as SOLVE (16), autoSHARP (17), CNS (18), SHELXD/E (19,20), or
BnP (21). At the stage of protein phase evaluation, in particular after density
modification, there should be a contrast in the phasing statistics, particularly in
the map interpretability, between the two enantiomorphs.

Obviously, if the first automatic attempt is successful, and leads to an inter-
pretable electron density map, there is no need for any further proceedings. If
the initial map is not satisfactory for either enantiomer, the phasing procedure
can be modified and repeated. The possible changes involve inclusion of more
heavy atom sites, a different resolution limit, or changing the program used.

If the significance of measured anomalous differences does not extend to the
full-resolution limit of diffraction data, it may be beneficial to perform the phas-
ing procedure at a lower resolution limit, and subsequently extend the phased data
at the density modification step (22). Various programs use different algorithms,
some employ simpler but quicker approaches, some are more elaborate but slow-
er. It is usual to start from a quick approach, and switch to more sophisticated pro-
gram if the other attempts failed. However, the individual crystallographer’s expe-
rience with a particular program is often important in obtaining final success.
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4. Notes
1. In addition to the use of bromides and iodides, it has been proposed that heavier

alkali metal cations, Rb (11) and Cs (8,12), soaked into protein crystals can also be
used for phasing. The procedure is analogous to the use of halides. The anomalous
scattering properties of Rb are similar to those of Br (with the X-ray absorption
edge at 0.87 Å) suitable for MAD phasing. The properties of Cs are analogous to
I, with a substantial anomalous signal at a wavelength of 1.54 Å and longer. 

2 It has been observed that soaking native crystals in concentrated solutions of salts
sometimes causes crystal lattice transitions. The orthorhombic P212121 crystals of
PSCP (23) underwent transformation to the hexagonal space group P6122 after
short soaking in 1 M solution of NaBr. The crystals of human peroxiredoxin 5 (24)
in a twinned monoclinic form after 30 s soak in 1 M NaBr changed to the tetrago-
nal form, diffracting to higher resolution. 

3. In general the larger the solvent accessible protein surface is, the more identifiable
halide sites can be expected. However, the number of highly occupied sites may
depend on several factors, such as the concentration of the halide (and other salts)
and the chemical composition and pH of the solution, the isoelectric point of the
protein, the presence of the positively charged residues as well as hydrophobic
patches at the protein surface, and others. It is therefore not possible to predict how
many halide sites can be expected in each individual case.

4. The comparisons of putative sites from separate direct methods solutions have to
take into account the space group symmetry operations as well as the possible ori-
gin shifts and inversion of the enantiomer.
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