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It is difficult to judge objectively the amount and resolution

limit of the anomalous signal present in diffraction data. While

several criteria can be used for this purpose, the usefulness of

these indicators varies and depends on factors such as the data

redundancy, the accuracy of the estimation of intensities and

their uncertainties, and the properties of the anomalously

scattering atoms in the crystal. Various indicators give an

approximate measure of the anomalous signal, but do not

provide a reliable guarantee that the crystal structure will be

solved. The ultimate criterion of the anomalous signal is a

successful structure solution. The current data-acquisition and

phasing methods are so advanced that it is often possible to

phase reflections and obtain preliminary electron-density

maps in a few minutes, while the crystal still resides at the

experimental station and further data can be collected if

necessary.
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1. Introduction

The anomalous diffraction signal has been recognized as

useful for the estimation of phases from the very beginning of

protein crystallography (Blow, 1958; Rossmann, 1961; Kartha

& Parthasarathy, 1965; North, 1965; Matthews, 1966a,b;

Blundell & Johnson, 1976). Because the anomalous intensity

differences are usually much smaller than the isomorphous

differences, the anomalous signal was initially treated as an

auxiliary source of phasing information accompanying the

stronger isomorphous signal. It became clear that the anom-

alous signal on its own was able to provide sufficient phasing

information not only for solving small structures (Rama-

chandran & Raman, 1956), but also in macromolecular crys-

tallography when Hendrickson & Teeter (1981) solved the

structure of crambin solely from the anomalous signal of

sulfurs and when Wang (1985) introduced the method of

breaking the anomalous phase ambiguity based on solvent

flattening.

The anomalous signal became the primary source of

phasing in the early 1990s, when Hendrickson and colleagues

introduced to practical usage the multi-wavelength anomalous

diffraction (MAD) method (Hendrickson, 1991; Smith, 1991)

and especially after the technique of genetic incorporation of

selenomethionine into proteins was proposed (Hendrickson et

al., 1990). The MAD method has matured in the last decade

(Hendrickson, 1999) and has become the phasing method of

choice. However, the even simpler single-wavelength anom-

alous diffraction (SAD) method is currently often successfully

used (Blow, 2003). The drive to replace multiple isomorphous

replacement (MIR) with the MAD and SAD methods is

largely fuelled by progress in the technology of X-ray sources

and detectors as well as in the methodology of diffraction

data-acquisition and phasing algorithms. Using cryocooled
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crystals, synchrotron beams and CCD detectors, it is currently

possible to accurately estimate and use the anomalous signal

equivalent to a fraction of a percent of the total scattered

intensity, which was not possible a couple of decades ago.

The amount of anomalous signal can vary considerably

depending on the number and type of anomalous scatterers

and on the X-ray wavelength. Certain heavy elements display

very pronounced white lines or peaks of the f 00 value near their

X-ray absorption edges. For the MV edge of uranium, this

value may reach 120 electron units (e), for lanthanides up to

30 e, for heavy metals about 15 e and for transition metals of

the third period up to 8 e (Hendrickson & Ogata, 1997). On

the other hand, the absorption edges of the lighter elements

are not easily reachable and atoms such as sulfur, phosphorus,

potassium and calcium have f 00 values about 1.0 or less elec-

tron units in the usable wavelength range. If the number of

anomalous scatterers is known, the Bijvoet ratio of the mean

anomalous difference to the mean amplitude expected

in the data can be estimated (Hendrickson & Teeter, 1981):

h|�F�|i/h|F |i = (2NA/NP)1/2/(f 00/f o
eff), where NA and NP are the

number of anomalous and the total number of protein atoms,

respectively, and f o
eff = 6.7 is the atomic scattering factor of the

‘average’ protein atom. If more than one type of anomalous

scatterer is present, the equation must be modified (Olczak et

al., 2003). According to this formula, the Bijvoet ratio should

rise at a higher diffraction angle �, since f 00 does not depend on

�, whereas f o diminishes at high resolution. The relative

difference in B factors between anomalous atoms and the rest

of the atoms also influences the Bijvoet ratio. If anomalous

scatterers form a group (e.g. a disulfide or a metal cluster), this

changes the dependence of the anomalous signal on resolution

(Banumathi et al., 2003). However, the theoretical predictions

may have only a little practical value. Professor Michael

Woolfson used to say (when the author was a postdoc in his

group):

In testing a new idea, it is legitimate to use ideal calculated data

to see whether the method is sound in principle. However, a

claim for effectiveness of such tests should only be made after

the method has been extensively tested with real observed data.

Methods vary very much in their sensitivity to data quality.

Fig. 1 shows the typical dependence of f 00 on the X-ray

wavelength. The theoretical curve, calculated according to

CROSSEC (Cromer, 1983), applies to the idealized case of a

single atom in a vacuum, but generally gives a quite accurate

estimation of f 00 (and f 0) further away from the absorption

edge. However, near the edge the f 00 value deviates consid-

erably from the ideal and typically displays a narrow white

line. It is therefore not possible in practice to estimate from

CROSSEC the experimental values of f 00 and f 0 which are

required for MAD phasing. These values can be estimated

approximately (to not more than one decimal digit accuracy)

from the fluorescence (or, more properly, excitation) spectrum

by the program CHOOCH (Evans & Pettifer, 2001).

If the number of anomalous scatterers is known, as is

usually the case with selenomethionines, sulfur or some well

characterized metalloproteins, the expected Bijvoet ratio can

be estimated. However, if the diffraction data are measured

from a crystal soaked in a salt solution, the number of bound

atoms and their occupancy cannot be known in advance nor

can the strength of the anomalous signal be predicted. In

practice, the expected amount of anomalous signal may differ

considerably from the final amount in the experimentally

measured reflection intensities. Usually, experimenters find a

lower signal than they expected, particularly if the data quality

is not very high. Sometimes surprises happen when the crystal

contains some additional unexpected scatterers such as, for

example, chloride ions in addition to the ten expected S atoms

in the crystal of hen egg-white lysozyme (Dauter et al., 1999).

In practice, the anomalous signal has to be estimated in the

measured diffraction data. Several quantitative criteria have

been proposed and used for this purpose; their usefulness

varies depending on the context. These criteria will be

discussed in the following sections.

2. Criteria used for estimation of anomalous signal

2.1. Anomalous signal-to-noise ratio

A very simple and easy-to-obtain criterion is the ratio of the

anomalous signal to the noise, calculated on the intensities,

h�I�i/h�(I)i, or amplitudes, h�F�i/h�(F)i, evaluated in

resolution ranges. It can be used to judge how far in resolution

meaningful anomalous differences extend (Schneider &

Sheldrick, 2002) and to truncate the data used for the anom-

alous substructure search at a resolution where h�I�i/h�(I)i
falls below about 1.3. However, it is not trivial to properly

estimate the uncertainties �(I) or �(F). They can be reason-

ably well estimated for highly redundant data, but for data

measured from low-symmetry crystals with low redundancy it

is difficult to be sure that all uncertainties are statistically

valid. The importance of properly estimated uncertainties has
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Figure 1
An excitation spectrum recorded on a crystal containing selenomethio-
nine. The black curve shows the behavior of the Se f 0 and f 00 values as
calculated from CROSSEC and the blue curves correspond to the values
estimated from CHOOCH.
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been discussed in several texts on data-collection strategy

(Dauter et al., 1999; Borek et al., 2003; Evans, 2006).

2.2. Ranom

Another simple measure of the anomalous signal is Ranom,

the ratio of the mean anomalous intensity difference to the

mean reflection intensity, Ranom =
P

hkl|I
+� I�|/

P
hkl(I+ + I�)/2.

This ratio does not take into account the uncertainties of the

estimated intensities and should be therefore compared with

the level of noise in the data, for example represented by

Rp.i.m. =
P

hkl[1/(N � 1)1/2]
P

i|Ii � hIi|/
P

hkl

P
iIi (Weiss, 2001).

The quotient Ranom/Rp.i.m. has been proposed as a practical

estimator of the significance of the anomalous signal (Weiss et

al., 2001; Mueller-Dieckmann et al., 2005).

2.3. Bijvoet amplitude ratio

A very similar criterion is the Bijvoet ratio h|�F�|i/h|F |i,
which can be estimated theoretically if the number and f 00

value of the anomalous scatterers are known (Hendrickson &

Teeter, 1981; Olczak et al., 2003; Shen et al., 2003; see above).

The Bijvoet ratio (similarly to Ranom) increases towards unity

if the amplitudes are aberrated with errors and its absolute

value is not a good indicator of the anomalous signal (Zwart,

2005). However, a comparison of the observed and theoreti-

cally calculated Bijvoet ratio is quite informative (Dauter et

al., 2002). Fig. 2 illustrates the case of several glucose

isomerase data sets collected at different wavelengths, where

at low resolution the observed Bijvoet ratio is close to the

expected value, but at high resolution some data sets deviate

considerably from the theoretically predicted values owing to

various levels of data inaccuracy (Ramagopal et al., 2003a).

2.4. v2 difference, Rmerge and list of outliers

Some data-reduction programs (e.g. HKL-2000; Otwi-

nowski & Minor, 1997) provide a statistic of the agreement

between the intensities of all symmetry-equivalent reflections

in the form of �2. In general, the �2 statistic compares the set

of measured quantites with their expected values. In this

context, if the spread of multiple intensity measurements of a

reflection follows the distribution expected from the level of

their estimated errors (e.g. from the Poisson statistics of

multiple measurements), the �2 values should be close to

unity. If the intensities of Friedel-related reflections differ

significantly but in the merging procedure they are treated as

equivalent, it will lead to �2 values that are higher than unity,

since the expectation of their equivalence will not be true. This

criterion may be used to correct the estimated standard

uncertainties to the statistically valid level, since the �2 values

resulting from merging only Friedel-independent reflections

should be close to unity.

The level of the �2 values obviously depends on the proper

estimation of errors. However, even if the errors are not

estimated properly, the �2 values will differ from unity, but

their difference between cases when Friedels are treated as

equivalent or not will still indicate the presence of anomalous

signal.

The �2 indicator is quite sensitive and can be used in the

early stages of data collection with partially complete data. If

such an early test is negative, the crystal can be discarded and

the beam time used for another crystal or project.

Following this tendency, the Rmerge values will be signifi-

cantly higher if data are merged as native than when Friedels

are separated. Of course, a small difference in Rmerge should be

expected from the twofold increase of redundancy when both

Friedels are treated as equivalent.

A careful inspection of the list of measurements marked by

the merging program as outliers can reveal the presence of an

anomalous signal, particularly if the data redundancy is high.

In practice, it may be enough to compare the number of

outliers when Friedels are merged as equivalent or indepen-

dent.

2.5. Correlation between data sets

A sensitive and informative test for the presence of

anomalous signal is the correlation between the signed

anomalous differences (F + � F�) within two related data sets.

These two sets can be collected with different wavelengths, as

in the case of MAD, or can be two partial subsets of the same

set. This criterion was used by the authors of the programs

SOLVE (Terwilliger & Berendzen, 1999; SOLVE v.1.16 and

later) and SHELXD (Schneider & Sheldrick, 2002) and is

implemented in SCALA (Evans, 2006). This test is very

practical for deciding that the data used for the substructure

search should be truncated at the resolution where the

correlation coefficient diminishes to 25–30%. This test does

not depend on the difficult and not always reliable estimation

of errors in anomalous differences.
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Figure 2
The h|�F� |i/h|F |i Bijvoet ratios in four data sets collected with different
wavelengths from crystals of glucose isomerase (Ramagopal et al., 2003a).
The brown lines correspond to the theoretically calculated values. At low
resolution, where the data accuracy is high, the observed Bijvoet ratios
are close to the expected values, but at higher resolution, where reflection
intensities are weaker and data less accurate, various data display
significant deviations of the Bijvoet ratio from the ideal.
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Figure 3
Anomalous signal indicators in resolution ranges for NaBr long-soak invasin data, DradBr3. The anomalous signal originates from the incorporated Br�

ions. (a) Rmerge for Friedel mates treated as independent (red) or equivalent (blue) reflections. (b) �2 values from merging procedure in SCALEPACK
for Friedels independent (red) and equivalent (blue). When uncertainties are properly adjusted (solid dots), the �2 values are close to unity. When they
are not corrected (empty circles) all �2 values are higher, but there is still a clear difference between the red and blue curves indicating the presence of
significant anomalous signal to about 2.0 Å resolution. (c) Ranom (blue) and Rp.i.m. (red) values and their quotient (green). Note that the Ranom/Rp.i.m. ratio
is scaled up five times. (d) h�F�i/h�(F )i signal-to-noise (red, left scale) and correlation coefficient between two separately merged parts of this data set
(blue, right scale). (e) Measurability as a function of resolution with properly estimated uncertainties (red dots) and with uncertainties significantly
underestimated (red circles). (f) Normal probability plot of the �F�/�(F ) values for data with properly (black) and wrongly (red) adjusted uncertainties.
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Figure 4
Anomalous signal indicators in resolution ranges for NaBr short-soak invasin data, DradBr2. Color codes and symbols are as in Fig. 3. (a) Rmerge for
Friedel mates. (b) �2 values for raw (circles) and adjusted (dots) uncertainties. (c) Ranom, Rp.i.m. and their ratio. The Ranom/Rp.i.m. ratio is scaled up ten
times. (d) h�F�i/h�(F )i signal-to-noise and correlation coefficient. (e) Measurability as a function of resolution with properly estimated uncertainties
(red dots) and with uncertainties significantly underestimated (red circles). (f) Normal probability plot of the �F�/�(F ) values.
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Figure 5
Anomalous signal indicators in resolution ranges for xylanase data. The anomalous signal originates from five S atoms in the xylanase molecule. The
color codes and symbols are as in Fig. 3. (a) Rmerge for Friedel mates. (b) �2 values for raw (circles) and adjusted (dots) uncertainties. (c) Ranom, Rp.i.m. and
their ratio. (d) h�F�i/h�(F )i signal-to-noise and correlation coefficient. (e) Measurability as a function of resolution with properly estimated
uncertainties (red dots) and with uncertainties significantly underestimated (red circles). (f) Normal probability plot of the �F�/�(F ) values.
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2.6. Difference in acentric and centric reflections Ras

This recently proposed (Fu et al., 2004) indicator gives a

proportion of the observed relative Bijvoet differences of

acentric to centric reflections, Ras = [|�I�a|/�(I)]/[|�I�c|/

�(I)]. The differences observed for centric reflections �I�c

represent pure noise, since these reflections cannot have any

anomalous signal, whereas �I�a contains contributions from

the real anomalous signal and noise; therefore, Ras can be

treated as a ‘normalized’ representation of the average Bijvoet

difference of the acentric reflections.

The number of centric reflections is usually small in low-

symmetry crystal classes. In classes 1 and 3 there are no centric

reflections at all. To deal with this problem, the Ras criterion

can be modified to accept in the denominator not only

contributors from centric reflections, but observed differences

between the intensities of reflections equivalent by pure

rotations, which should also always be equivalent.

2.7. Measurability

This criterion gives the fraction of reflections with the

relative anomalous intensity difference |�I�|/I larger than a

certain threshold value and simultaneously with each intensity

of the pair I +, I� larger than a specified limit. This indicator

was originally proposed by the Madras group (Parthasarathy

& Parthasarathi, 1974; Velmurugan & Parthasarathy, 1984).

Recently, Zwart (2005) elaborated this concept and intro-

duced in addition the dependence on uncertainties instead of

only on the absolute intensity limits and defined the measur-

ability as a fraction of reflections for which the anomalous

intensity difference is larger than three times its uncertainty

and both intensities of the Friedel pair are larger than three

times their uncertainty: |I + � I�|/[�(I +)2+ �(I�)2]1/2 � 3 and

min[I +/�(I +), I�/�(I�)] � 3. The anomalous signal can be

accepted as ‘measurable’ (i.e. significant) if the value of

measurability is higher than 5%.

2.8. Normal probability plot

The normal probability plot (Abrahams & Keve, 1971;

Howell & Smith, 1992) compares the ordered set of �F�/�(F)

values against the expected normal distribution. If the plot

follows a straight line, the distribution is normal (Gaussian).

However, the anomalous differences are not distributed

normally; therefore, if the plot deviates from linearity and if its

slope is larger than unity, the anomalous differences are

meaningful with respect to the standard uncertainties. The

plot does not provide the resolution limit of the meaningful

anomalous signal, but its advantage is that it can be used with

only a fraction of the full complete data set.

3. Examples

The analysis of three data sets containing different amounts of

anomalous signal is illustrated in Figs. 3, 4 and 5. Two data sets

were collected from crystals of Escherichia coli invasin soaked

in 1 M NaBr, firstly for 12 s (Dradbr2) and secondly for 40 s

(Dradbr3). The structure was solved easily by SAD using the

second data set (Jędrzejczak et al., 2006). The crystals of

invasin underwent a type of lattice transition during soaking,

so that the short-soak data are significantly worse than the

data measured after a longer soak. Neither of these data sets is

highly redundant; they were collected with the ‘high-energy

remote’ wavelength, 100 eV above the absorption edge of

bromine, where it has an f 00 value of about 3.7 electron units.

The other data were collected with very high redundancy

from a native crystal of xylanase (Ramagopal et al., 2003b) at

� = 1.74 Å, where sulfur has f 00 = 0.70. There are five sulfurs in

the molecule of xylanase (302 amino acids).

3.1. Invasin

Figs. 3 and 4 show graphs of various indicators of the

anomalous signal for both long- and short-soak invasin data

sets in the whole range of data resolution. All criteria suggest

the presence of a significant amount of anomalous signal at

low resolution. The difference between Ranom and Rp.i.m. is

large and h�F�i/h�(F)i is higher than 1.3 up to the high-

resolution limit. However, the differences between Rmerge and

�2 for Friedel mates merged and separate suggest that the

anomalous signal is not significant in the highest resolution

ranges and in the long-soak Dradbr3 data it extends further

than in the short-soak Dradbr2 data, even if the errors are not

estimated properly. The difference in Rmerge at high resolution

is as expected from the doubled redundancy resulting from

merging Friedel mates. The correlation coefficient calculated

between the �F�/�(F) values of the same reflections in the

two partial sets obtained from merging data from two halves

of all diffraction images confirms that the meaningful signal

extends to about 2.3 Å in the Dradbr3 data and only to about

3.0 Å in the Dradbr2 data. Inspection of the normal prob-

ability plot also reveals the presence of a significant signal,

since the slope of the central part of the Dradbr3 plot is about

3 and that in the Dradbr2 plot is about 2 and both plots are

significantly curved.

The final result of the X-ray diffraction experiment is

electron density; therefore, to determine how far in resolution

the meaningful anomalous signal extends, the anomalous

difference maps were calculated with the refined phases and

�F� values for the whole resolution range and for the highest

resolution bin (Fig. 6). A comparison of Figs. 6(a) and 6(b) and

of Figs. 6(c) and 6(d) shows that whereas in DradBr3 data the

anomalous signal is weak but still significant at highest reso-

lution, in the Dradbr2 data it is not higher than the noise level.

3.2. Xylanase

The graphs for xylanase are illustrated in Fig. 5. The

differences of Rmerge and �2 are visible, but they are very small:

the scale on the vertical axis differs greatly from that in the

previous figures for invasin. All criteria, even h�F�i/h�(F)i,
show that a small but significant signal is uniformly present in

all resolution bins. This is corroborated by inspection of the

anomalous difference maps (Figs. 6e and 6f). The map calcu-

lated with only the highest resolution data is noisier than in
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the case of the full data resolution, but the sulfur sites are

reproduced quite convincingly above the noise.

4. Discussion

Comparison of the three presented examples allows some

conclusions to be drawn about the usefulness of various

quality criteria. The Rmerge values for the two invasin data sets

suggests that whereas the general quality (not taking into

account the anomalous signal) of the DadBr3 data is good,

with Rmerge at low resolution of below 5%, the DradBr2 data

are mediocre, with Rmerge at low resolution of about 10% and

reaching high values beyond 2.5 Å resolution (Figs. 3a and 4a).

The xylanase data are highly redundant (12-fold), but Rmerge at

low resolution is below 4% and even at 1.75 Å it does not

exceed 10% (Fig. 5a). Both the DradBr3 and DradBr2 data

sets have comparable redundancy (about fourfold), but the

Rmerge values for cases when Friedels are treated as equivalent

or non-equivalent are very similar for DradBr2 data, whereas

they differ for DradBr3 data, which suggests that the anom-

alous signal is more significant in the latter data set. The

analogous difference in Rmerge for xylanase is very small and

extends throughout all resolution ranges, but taking into

account the higher data redundancy it is meaningful.

The graph of �2 values in resolution bins reveals that

anomalous signal is present in all three data sets, but in

research papers
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Figure 6
Anomalous difference Fourier maps calculated with model phases and with full or only high-resolution reflections. The vicinity of the most prominent
bromide site is shown with the long-soak invasin data in (a) the 30–1.76 Å range and (b) the 2.0–1.76 Å range. The same site is shown with the short-soak
invasin data in (c) the 30–1.88 Å range and (d) the 2.15–1.88 Å range. The vicinity of two methionines in xylanase is shown with data in (e) the 30–1.7 Å
range and (f ) the 2.0–1.7 Å range. These figures were obtained using BOBSCRIPT (Esnouf, 1999).
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different amounts and extending to a different resolution

limit. The DradBr3 data clearly contain a higher amount of

anomalous signal, extending to about 2.0 Å, while in the

DradBr data it reaches about 2.5 Å (Figs. 3b and 4b). These

graphs show a typical tendency where the largest difference

between the red and blue curves is at lowest resolution and

diminishes towards high resolution. This effect is expected

since at low resolution the accuracy of measured intensities

and anomalous differences is high, whereas at high resolution

all intensities are much weaker and the accuracy of measured

intensities and anomalous differences is low. The graph for

xylanase data (Fig. 5b) is somewhat atypical, since it shows a

uniform difference in �2 values in all resoloution ranges. The

crystals of xylanase have the potential to diffract to atomic

resolution, so that the 1.75 Å data practically constitute a ‘low-

resolution’ data set that is highly redundant and exceptionally

accurate. The graph suggests that the anomalous signal of five

S atoms in a 30 kDa protein is weak but significant in all

resolution ranges of these data.

The same figures also show the analogous �2 values that

result from improper merging when no correction to the

uncertainties was applied and therefore the Friedel-indepen-

dent �2 values differ from unity. However, the differences

between the red and blue curves represented by empty circles

in Figs. 3(b), 4(b) and 5(b) are equally informative about the

content of the anomalous signal as in the case of a more

proper estimation of errors.

The Ranom values, similarly to Rmerge and Rp.i.m., increase

with resolution for all three data sets (Figs. 3c, 4c and 5c),

which reflects the gradual worsening of the accuracy of

intensity measurements, as all intensities decrease towards

high resolution. The Ranom/Rp.i.m. ratio for DradBr3 data is

higher than 2.0 in the low-resolution ranges and drops below

this value beyond �2.3 Å, whereas for DradBr2 it is lower

than 2.0 everywhere, confirming the inferiority of the DradBr2

data. For xylanase this ratio is higher than 2.0 in all resolution

ranges. The overall values are 2.33 for DradBr3, 1.80 for

DradBr2 and 2.44 for xylanase. However, this criterion does

not discriminate between the anomalous data quality as

clearly as other indicators.

The signal-to-noise ratio h�F�i/h�(F)i is presented in

Figs. 3(d), 4(d) and 5(d). As expected, all curves show that the

anomalous signal diminishes at high resolution, but it is clear

that the signal in the DradBr3 data is much stronger and

extends further than that in the DradBr2 data. According to

the criterion h�F�i/h�(F)i � 1.3, the meaningful anomalous

signal extends to about 2.0 Å for DradBr3, to 2.5 Å for

DradBr2 and throughout the entire resolution range for

xylanase. The h�F�i/h�(F)i ratio obviously strongly depends

on the correctly estimated uncertainties.

The same figures also show the correlation coefficients

between the anomalous differences in the two half-

redundancy partial sets of data. It drops below the significance

level of 0.3 at 2.3 Å for the DradBr3 data and at 3.0 Å for the

DradBr2 data. For the xylanase data the correlation is above

1.3 only up to about 4.0 Å, which is in strong disagreement

with the majority of other quality indicators, suggesting that in

these data the meaningful anomalous signal extends much

further in resolution.

The values of measurability calculated as a function of

resolution are presented in Figs. 3(e), 4(e) and 5(e). According

to these plots, measurability higher than 5% extends to about

2.3 Å in the DradBr3 data, but in the DradBr2 data only the

lowest resolution reflections contain ‘measurable’ anomalous

signal. In contrast, a measurable anomalous signal extends up

to the highest resolution limit in the xylanase data. The overall

global measurability values confirm this: 6.20% for the

DradBr3 data, 1.58% for DradBr2 and 8.50% for xylanase.

This very clearly shows the difference in the quality of the two

DradBr data sets and indicates that the anomalous signal in

xylanase data, albeit very weak, is highly significant and

measured accurately. However, the values of measurability by

its definition very strongly depend on the estimation of errors,

as evidenced by the curves shown in the figures.

The normal probability plots, shown in Figs. 3(f), 4(f) and

5(f), suggest that all three analyzed data sets contain signifi-

cant anomalous signal. However, these plots do not permit

judgement of how far in resolution the signal extends. More-

over, the amount of the signal, as represented by the slope of

the linear part of the plot, is strongly dependent on the correct

estimation of uncertainties.

The comparison suggests that in judging the amount of the

anomalous signal in the data, it is advisable to take into

account the whole context of several criteria; for example, the

data redundancy or the overall data quality abstracting from

the content of the anomalous signal as well as the level of the

signal expected from the content of the sample. Various

indicators may suggest a different amount or different reso-

lution limit of the meaningfulness of the anomalous signal. It

may be therefore advisable not to rely on a single criterion but

rather to check several independent indicators.

5. Conclusions

All the criteria discussed above can be used for judging the

presence of the anomalous signal in the diffraction data.

Knowledge of how far in resolution the significant anomalous

signal extends is especially important for selecting the reso-

lution limit of data used for substructure solution, where

inclusion of very noisy high-resolution data usually diminishes

the chance of success. For the subsequent stages of phasing,

model building and refinement all available data should be

used.

Some of the criteria of judging the anomalous signal are

more practical or more objective than others. However, there

is no indicator that would guarantee that the amount of the

signal is sufficient for successful phasing of the novel structure

from the newly acquired data. In fact, the opposite reasoning

is true: using these indicators it is possible and easy to realise

that the measured intensities do not contain any meaningful

anomalous signal. The only convincing way of finding out if

the signal is sufficient is to solve the structure. This sounds like

a paradox, but it is today a quite practical approach. The

methodology and software used for data acquisition and
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structure solution are very advanced and allow the experi-

menter to (at least) obtain a preliminary structure solution

within minutes of the end of the data-collection session, when

the crystal is still at the experimental station. In such an

approach, one can use the feedback from the structure-

solution attempts and apply it to further modify the data-

collection strategy, increasing chances of ultimate success.
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