The Crystal Structure of RhoA in Complex with the DH/PH Fragment of PDZRhoGEF, an Activator of the Ca2+ Sensitization Pathway in Smooth Muscle

Urszula Derewenda, Arkadiusz Oleksy, Andra S. Stevenson, Justyna Korczynska, Zbigniew Dauter, Andrew P. Somlyo, Jacek Otlewski, Avril V. Somlyo, and Zygmunt S. Derewenda

1Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville, Virginia 22908
2Laboratory of Protein Engineering Institute of Biochemistry and Molecular Biology University of Wroclaw, Wroclaw 50-137 Wroclaw Poland
3Synchrotron Radiation Research Section Macromolecular Crystallography Laboratory NCI, Brookhaven National Laboratory Upton, New York 11973

Summary

Calcium sensitization in smooth muscle is mediated by the RhoA GTPase, activated by hitherto unspecified nucleotide exchange factors (GEFs) acting downstream of G\(_{12/13}\)G proteins. Here, we show that at least one potential GEF, the PDZRhoGEF, is present in smooth muscle, and its isolated DH/PH fragment induces calcium sensitization in the absence of agonist-mediated signaling. In vitro, the fragment shows high selectivity for the RhoA GTPase. Full-length fragment is required for the nucleotide exchange, as the isolated DH domain enhances it only marginally. We crystallized the DH/PH fragment of PDZRhoGEF in complex with nonprenylated human RhoA and determined the structure at 2.5 Å resolution. The refined molecular model reveals that the mutual disposition of the DH and PH domains is significantly different from other previously described complexes involving DH/PH tandems, and that the PH domain interacts with RhoA in a unique mode. The DH domain makes several specific interactions with RhoA residues not conserved among other Rho family members, suggesting the molecular basis for the observed specificity.

Introduction

Increased Ca2+ sensitivity (or Ca2+ sensitization) in smooth muscle is a result of a higher level of phosphorylation of the regulatory light chain of myosin, with concomitant increased tension at constant submaximal Ca2+ concentration. This phenomenon occurs in response to agonist stimulation and the resultant RhoA-mediated inhibition of the myosin light chain phospha-
tase (MLCP). Experiments using permeabilized muscles that retain G protein-coupled receptors established that this pathway can also be activated by GTPyS while Ca2+ is clamped (Kitazawa et al., 1989). Different agonists can stimulate unequal maximal Ca2+ sensitization (Him-pens et al., 1990), acting through trimeric G proteins of the G\(_{12/13}\), G\(_{12/13}\), and G\(_{12/13}\) families and the RhoA GTPase (Gong et al., 1996). Calcium sensitization has broad implications for health, disease, and therapy (Somlyo and Somlyo, 2003), but many of its aspects are not well understood. One of the important unresolved questions is the nature of the coupling of the trimeric G proteins and RhoA, which is most likely mediated by RhoA-specific members of the Dbl family of nucleotide exchange factors, or GEFs (Schmidt and Hall, 2002; Whitehead et al., 1997). A majority of known GEFs in this family are multidomain proteins of crucial physiological significance acting downstream of the tyrosine-kinase family of receptors, but at least one family is activated by G protein-coupled receptors via an RGSL (RGS-like) domain capable of binding the \(\alpha\) chain of G\(_{12/13}\) (Fukuhara et al., 1999, 2000; Hart et al., 1998; Kozasa et al., 1998; Suzuki et al., 2003). This unique family showing distinct homology includes PDZRhoGEF (Fukuhara et al., 1999; Rumenapp et al., 1999), also known as GTRAP48 (Jackson et al., 2001), p115RhoGEF (Kozasa et al., 1998), and LARG, or the leukemia-associated RhoGEF (Fukuhara et al., 2000). An RGSL domain was also recently discovered in another, more distantly related exchange factor, Lbc (Dutt et al., 2004). The crystal structures of the RGSL domains from PDZRhoGEF and p115 have been solved, and models of interactions with G\(_x\) have been proposed (Chen et al., 2001; Longenecker et al., 2001), but the exact mechanism by which this interaction may activate the nucleotide exchange function of the GEF molecule is not known.

All GEFs active on the Rho family of GTPases catalyze the GDP/GTP exchange by stabilizing the nucleotide-free form of the GTPase, using a tandem of DH (Dbl-homology) and PH (pleckstrin-homology) domains, thereby allowing the more abundant in vivo GTP to replace GDP. Many aspects of the molecular mechanism by which this is accomplished have been revealed by the crystal structures of complexes of the Tiam1 DH-PH tandem with Rac1 (Worthylake et al., 2000); the ITSN (intersectin) DH-PH tandem with Cdc42 and the Dbs (DH-PH) with RhoA (Snyder et al., 2002); and Dbs (DH-PH) with Cdc42 (Rossman et al., 2002). These studies have shown that while all the residues essential for the nucleotide exchange process are found in the DH domain, the PH domain, at least in some cases, contributes substantially to the selectivity and specificity of interactions.

Given the presence of the RGSL domain in PDZRhoGEF and its homologs, and because of the high selectivity that these GEFs show for RhoA as their substrate, we considered the possibility that at least some of the family members might be involved in the Ca2+ sensitiza-

*Correspondence: zsd4n@virginia.edu (Z.S.D.), avs5u@virginia.edu (A.V.S.)

Deceased.
PDZRhoGEF (residues 712–1081) could act as the sole activator of the Ca^{2+}-sensitization pathway. The underlying hypothesis was that in the absence of other domains that might exert downregulation, the DH/PH fragment should be constitutively active. To test this, a recombinant DH/PH fragment of PDZ-RhoGEF was purified and used in isometric tension measurements using permeabilized rabbit pulmonary artery strips, as described in Experimental Procedures. The presence of the exogenous DH/PH fragment reproducibly resulted in a significant increase in force at constant Ca^{2+} concentration, pCa 6.7 (16.6 ± 3.3% of the maximal contraction at pCa 4.5) (Figure 1). Addition of the filtrate of the DH-PH fragment was without effect on force. The addition of U46619, an activator of G_{12/13}-coupled thromboxane A2 receptors, caused a further increase in contraction, illustrating that agonist-G protein-coupled receptor activation of the Ca^{2+} sensitization pathway is intact in this permeabilized muscle preparation. The increase in force was abolished by the Y-27632 Rho-kinase inhibitor at 10 μM concentration, suggesting—as expected—a role for Rho-kinase in the activation of Ca^{2+} sensitization mediated by the DH/PH fragment.

The DH/PH Fragment Is Highly Selective In Vitro for RhoA
Having established the physiological effect of the DH/PH fragment, we asked if the presence of the DH/PH fragment leads to selective activation of the RhoA GTPase. Although a larger fragment encompassing the DH/P-1 tandem and the C-terminal domain of PDZ-RhoGEF (residues 637–1522) has been shown to selectively catalyze the nucleotide exchange for RhoA (Rumenapp et al., 1999) no rigorous in vitro functional studies were reported to date for the isolated DH/PH fragment or the DH domain. Using a fluorimetric assay described in Experimental Procedures, we measured intrinsic nucleotide exchange rates for RhoA, Cdc42, and Rac1, and then assessed the acceleration of the reaction in the presence of either the isolated DH domain, or of the intact DH/PH fragment (Figure 2, Table 1). The rate of exchange increases more than two orders of magnitude for RhoA in the presence of the DH/PH fragment, and only 7-fold for Cdc42. There is no detectable effect on Rac1. In contrast, the Dbs DH/PH fragment was reported to catalyze ~50-fold enhancements of the reaction rates for Cdc42 and RhoA, while intersectin is strictly selective for Cdc42, with a similar catalytic effect (Cheng et al., 2002; Rossman et al., 2002; Snyder et al., 2002). Neither protein catalyzes nucleotide exchange for Rac.

The isolated DH domain is capable of only a 5-fold enhancement of the nucleotide exchange for RhoA, indicating that the PH domain plays a critical role for both the catalytic function of the GEF and for its selectivity. In fact, this pattern of PH-assisted catalysis is virtually identical to that observed for Dbs and Trio (Liu et al., 1998; Rossman and Campbell, 2000), but unlike intersectin, whose DH domain does not require the PH domain for catalysis (Pruitt et al., 2003).

The Crystal Structure of the DH/PH-RhoA Complex: An Overview
In order to rationalize the observed functional properties of the DH/PH fragment, we solved its crystal structure in...
Structure of RhoA Bound to DH/PH of PDZ-RhoGEF

1957

the nucleotide binding pocket, consistent with the notion that RhoA is nucleotide-free. In contrast, the PH domains are less well defined and the mean isotropic displacement (B) parameters of the DH domains and RhoA molecules are lower than those of the PH domains (~53 Å² for the DH and ~63 Å² for RhoA versus ~87 Å² for the PH domains). Thus, each of the PH domains appears to have a significant degree of freedom within the crystal lattice in spite of interacting with both its partner DH domain and the RhoA GTPase. The two complexes differ slightly in the dispositions of the DH and PH domains relative to the RhoA GTPase. Specifically, least-squares superposition of the complexes on RhoA reveals that the DH domains are minimally rotated with respect to each other by ~2.5° around an axis approximately perpendicular to the interface. The two PH domains are rotated by ~4°. These minor conformational variations do not affect the detailed architecture of the interfaces discussed in this paper. Furthermore, the similarity of the two complexes constrained in the crystal lattice by two different sets of crystal contacts strongly suggests that the observed conformations are representative of that in solution. For the purposes of subsequent analysis, we treat the two complexes as identical.

As in the other previously reported crystal structures of similar complexes, the interaction with the DH/PH fragment alters the local structure of the two functionally important switch regions in RhoA, thus stabilizing the nucleotide free form (Figure 3A). The structure of RhoA in the complex described here is virtually identical to that described in the Dbs complex (Snyder et al., 2002). Figure 2. Guanine Nucleotide Exchange Activity of RhoA (1–193) and Cdc42 (1–191) Stimulated by DH Domain and DH/PH Tandem of PDZ-RhoGEF (In Vitro)
The rate of exchange reaction was monitored by increase in the mant-GTP fluorescence intensity as a result of its incorporation to the GTPase, as described in Experimental Procedures. Intrinsic exchange activities of RhoA and Cdc42 are shown as a control experiment (dark green circles). The rate of nucleotide exchange stimulated by DH domain (red circles) and DH/PH tandem (blue circles) was estimated by linear regression analysis of approximately the first 50 s after DH stimulation and 12 s after DH/PH stimulation.

Table 1. Nucleotide Exchange Rates of Intrinsic, DH-Stimulated, and DH/PH-Stimulated Reactions on RhoA, Cdc42, and Rac1 GTPases

<table>
<thead>
<tr>
<th></th>
<th>Control a (RF s⁻¹ × 10⁻³)</th>
<th>DH-stimulated (RF s⁻¹ × 10⁻³)</th>
<th>FS b</th>
<th>DH/PH-stimulated (RF s⁻¹ × 10⁻³)</th>
<th>FS b</th>
</tr>
</thead>
<tbody>
<tr>
<td>RhoA (1–193)</td>
<td>1</td>
<td>4.4</td>
<td>4.4 ×</td>
<td>136</td>
<td>136 ×</td>
</tr>
<tr>
<td>RhoA (1–181)</td>
<td>0.6</td>
<td>3</td>
<td>5 ×</td>
<td>125</td>
<td>208 ×</td>
</tr>
<tr>
<td>Cdc42 (1–191)</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2 ×</td>
<td>7.8</td>
<td>7.1 ×</td>
</tr>
<tr>
<td>Rac1 (1–192)</td>
<td>0.7</td>
<td>0.7</td>
<td>1 ×</td>
<td>0.7</td>
<td>1 ×</td>
</tr>
</tbody>
</table>

a Control experiment indicates intrinsic (nonstimulated) exchange activity of a given GTPase.

b RF—relative fluorescence signal (λ ex = 356 nm, λ em = 445 nm)

c FS—fold stimulation value; reflects the ratio of the initial exchange rate of DH- or DH/PH- stimulated reaction to the intrinsic rate of exchange for given GTPase.
of ≈ 1.6–1.8 Å. In contrast, both TIAM1 and Dbs GEFs, acting on Rac and RhoA/Cdc42, respectively, deviate significantly with pairwise rms differences above 3 Å and sequence identity levels of $\approx 21\%$ for TIAM1 and $\approx 24\%$ for Dbs. The closest fit between the DH domains of intersectin and PDZRhoGEF is in the CR1 and CR3 regions. The CR2 region, which is distal to the GTPase mean-square difference of ≈ 1.6 Å on 97 C$_{\alpha}$ atoms, with the β strands and the C-terminal helix showing the highest similarity. A distinctive feature of the PH domain of PDZRhoGEF is an 18-residue insertion in the β4 strand, between Leu1005 and Pro1024. This insertion is similar to a special wide (SW) category of β-bulges (Chan et al., 1993), except that Pro1024—which is in the αR conformation—is an unusual residue at this position. We were unable to find another insertion of this type among any other PH domains. The resulting bulge in the tertiary fold protrudes into the canonical phosphoinositide bind-

Figure 3. The Crystal Structure of the RhoA in Complex with the DH/PH Fragment of PDZRhoGEF and Its Comparison to Complexes with Intersectin and Dbs

(A) The general features of the DH-domain (green)–RhoA (yellow) interface, with the PH domain (red) at the rear; the two switch regions of RhoA are shown in purple and labeled; the CR regions of the DH domain are dark green and labeled.

(B) A comparable view of the intersectin’s DH/PH fragment in complex with Cdc42-1KI1.PDB.

(C) A rotated view of the complex shown in A, with the PH domain (red) into the foreground; the unique β4 bulge is shown in turquoise with the dashed line indicating poorly defined fragment, and dark blue indicates the linker region between the DH and PH domains; the DH domain in the background is green.

(D) A comparable view of the Dbs DH/PH fragment in complex with RhoA-1LB1.PDB.
ing site and shows high conformational flexibility as judged by the relatively poor quality of the electron density, particularly in the solvent exposed fragment. The other major differences between the PH domains of PDZ-RhoGEF and Dbs are at the splayed end due to very different conformations of the β1/β2 loop, which is ~10 amino acids longer in Dbs, and the β3/β4 loop, also significantly longer in Dbs.

It has been noted, that many PH domains are strongly polarized (Lemmon et al., 2002; Macias et al., 1994). Most canonical PH domains have a positive potential at the “bottom” splayed end of the structure, between the β1/β2 and β3/β4 loops, where they bind phosphoinositides. In Dbs, the region of the β1/β2 loop contains five Lys and Arg residues and four more on the β3 and β4 strands. In the case of the PDZ-RhoGEF PH domain, the β1/β2 loop has only three positively charged residues counterbalanced by two aspartates. Three more positive charges are found on the β4 strand, but overall the positive potential is much weaker, suggesting that phosphoinositide binding may not be a primary function of this protein, although no experimental data to confirm this notion have been reported. In addition, as already pointed out, the putative phosphoinositide binding pocket is partially filled with a long β-bulge originating from the β4 strand.

The DH-RhoA Interface
The interface between the DH domain and RhoA is similar to that observed in other complexes of this type involving the DH/PH fragments of Tiam1, Dbs, andintersectin (Karnoub et al., 2001; Rossman et al., 2002; Snyder et al., 2002). RhoA buries a total of 1,467 Å² of solvent accessible surface. The interface is formed primarily by the contacts between the residues in the conserved regions (CR) CR1 and CR3 of the DH domain and switch I of RhoA, and by the contacts between a segment just preceding and involving the CR3 region and the α6 helix of DH, and switch II of RhoA (Figure 4).

The interactions involving switch I of RhoA are generic for Rho GTPases, particularly that of Glu741DH with the backbone amides of Thr37RhoA and Val38RhoA, as well as the side chain hydroxyl of Tyr144RhoA. These interactions stabilize the switch I region of all Rho GTPases in the known complexes in the same conformation.

The switch II interactions in the known complexes, which define the selectivity for the GTPase, are centered on a bulky residue on the surface of the GTPase (Trp58 in RhoA, Trp56 in Rac, and Phe56 in Cdc42) nested in a molecular cradle created by a set of residues in the α5a helix of the DH domain. In the present structure this paradigm is preserved, and the “cradle” is formed by Leu869RhoA, Asp873RhoA, and Ile876RhoA. Particularly interesting is the side chain of Asp873RhoA, which is locked into its conformation by an H-bond accepted by Oi2 from the backbone amide of Gln870RhoA (otherwise unpaired) and an apparent C-H…O bond from the C2 atom of the indole ring of Trp58RhoA. The C2 atom (Trp58)–Oi1(Asp73) distances in the two molecules are 3.2 Å and 3.3 Å respectively with suitable geometry. The C-H…O bonds are increasingly recognized as a general structural feature in proteins (Derewenda et al., 1995), contributing significantly to protein-ligand (Pierce et al., 2002) and protein-protein interactions (Jiang and Lai, 2002). More recently it has been noted that –CH groups within the indole ring of tryptophans are often donors of such weak, but structurally important H-bonds (Petrella and Kaplans, 2004). In addition to this weak interaction with Trp58RhoA, Asp873RhoA also forms an energetically more important salt bridge with Arg59RhoA. This is one of several salt bridges that flank the Trp58-centered interface, including those formed by Arg868RhoA with both Asp45RhoA and Glu54RhoA, Arg872RhoA with Asp76RhoA, and Arg867RhoA with Glu40RhoA. Finally, there are a few hydrophobic interactions in this interface, with the most prominent one involving Met879RhoA on one side and Leu69RhoA and Leu72RhoA on the other.

An additional interaction involves the switch II region of RhoA and helix α6 of the DH domain. The side chain of Arg68RhoA, a residue conserved among all Rho GTPases, makes a double salt bridge with Glu928DH and Asn929DH. In addition, the backbone amide of Arg68RhoA donates an H-bond to the side chain of Asp921DH. Glu928DH corresponds to Glu1428DH and Glu1239DH in intersectin and Tiam1, respectively, and so the salt bridge may have a generic significance for these GEFs. In contrast, in each of the Dbs complexes, Arg68 of the GTPase interacts with the backbone carbonyl of 887DH and with the side chain hydroxyl of Tyr889DH.

The interaction involving switch II and the α6 helix of the DH domain may contribute to the integrity and stability of the α6 helix and therefore to the stability of the whole complex. In Dbs, the α6 helix in the DH/PH fragment appears to be stable in both of its complexes with GTPases, as inferred from the respective crystal structures. In contrast, the structure of the isolated Dbs DH/PH fragment shows that in the absence of the GTPase the α6 helix may bend away from the body of the DH domain, thus altering the relative position of the PH domain; this is seen in two out of four copies of the DH/PH molecule in the asymmetric unit (Worthylake et al., 2004). It is possible that the C-terminal part of the α6 helix requires stabilization provided by protein-protein interactions. The linker connecting the DH and PH domains, as well as the PH domain itself, makes several contacts with the C terminus of the α6 helix. To date, no structure is available for any of the isolated DH domains from the relevant DH/PH fragments, and no comparisons are possible, but it is likely that without the PH domain the conformation of the α6 helix might be altered and the interactions with the GTPase would be lost.

The Orientation of the PH Domain in the Complex
The most significant diversity between the known structures of DH/PH GEF fragments in complexes with their cognate GTPases is in the position of the PH domain relative to the DH-GTPase interface. This variation stems from the differences in the length of the C-terminal (α6) helix of the DH domain, as well as a rotation of the PH domain around the α6 helix. The shortest helix—26 residues—is seen in Dbs (Figure 5A). In other complexes, namely Tiam1, ITSN, and PDZ-RhoGEF, the α6 helix is 10 to 13 amino acids longer. In this regard, the TIAM1 α6 helix is between that of Dbs on the one hand,
and those of ITSN and PDZ-RhoGEF on the other; it is bent by \(\sim 120^\circ \) at position 1240, which makes it comparable— with respect to its effective length—to that of Dbs. The other aspect of the molecular architecture is the rotation of the PH domain around the \(\alpha_6 \) helix. The kink in TIAM1 \(\alpha_6 \) makes the situation unique: the C-terminal part of the \(\alpha_6 \) rotates away from the body of the DH domain pulling behind the PH domain, so that it turns away from Rac1 and, consequently, no contacts are seen between the two (Figure 5B). In the other three structures, the PH domain is turned toward the GTPase. In Dbs the rotation of the PH domain and the shorter
Structure of RhoA Bound to DH/PH of PDZRhoGEF

Figure 5. The Disposition of the PH Domain in Complexes of the DH/PH Fragments with Rho-GTPases

GTPases are shown in yellow, with purple switches; DH domains are in green; PH domain in red; and helix α6 of the DH domain is dark blue.
(A) Two orthogonal views of the Dbs DH/PH complex with RhoA-1LB1.PDB.
(B) TIAM1 DH/PH in complex with Rac1-1FOE.PDB.
(C) Intersectin DH/PH in complex with Cdc42-1KI1.PDB.
(D) The PDZRhoGEF DH/PH complex with RhoA reported in this paper.

length of the α6 helix bring the β3/β4 loop into contact with switch 2 of the GTPase. In the intersectin, this contact is not possible due to length of the α6 helix which extends ~16 Å further compared with Dbs (Snyder et al., 2002), despite the fact that the rotation of PH domain in ITSN (Figure 5C) is similar to Dbs. Interestingly, the structure described here resembles intersectin more than Dbs, because the length of the α6 helix is virtually identical in the two proteins (Figure 5D). However, the PH domain is rotated by ~26° further toward RhoA compared to intersectin. This is still inadequate to make the β3/β4 loop contact switch 2 of the GTPase, as seen in Dbs and the contacts that the PH domain makes with RhoA are limited to the C-terminal portion of the α3a helix and in particular Glu97 which is H-bonded to Ser1065 and Asn1068 in the C-helix of the PH domain. The associated buried surface is very limited (~260 Å²) and accounts for only ~8% of the total buried surface in the complex. In intersectin this fraction is even lower (~4%), while in Dbs the PH/GTPase interface accounts for over 22% of the total buried surface.

Recognition of RhoA by PDZ-RhoGEF

One of the biologically most important, and medically most relevant questions is the molecular basis of the recognition of target GTPases by GEFs. While many GEFs show relative promiscuity with respect to GTPase activation, the PDZRhoGEF and its homologs show remarkable specificity toward RhoA. Furthermore, the observed enhancement of nucleotide exchange activity observed for the DH/PH fragment of PDZRhoGEF on RhoA is approximately 4-fold higher than any of the hitherto reported rates for other DH/PH tandems. The structure of the complex reveals several interesting features that allow us to hypothesize about the roots of both high selectivity and activity.

A previous elegant study (Snyder et al., 2002), based on crystallographic investigations of the complexes of intersectin and Dbs with Cdc42 and RhoA, respectively, put forward a general proposal for a mechanism of positive selection of RhoA by GEFs. According to this proposal Trp58RhoA is one of the specificity determinants for those GEFs that discriminate between Cdc42, which has Phe in the analogous position, and RhoA. This bulky residue is seen in the Dbs-RhoA structure to be sequestered between Leu759 DH and Leu766 DH, equivalent in PDZRhoGEF to Leu869 DH and Ile876 DH. It has been shown that the Leu766 DH → Ile mutation in Dbs substantially increases its catalytic activity on RhoA, from 48-fold to 267-fold (Cheng et al., 2002), with little impact on Cdc42 (Cheng et al., 2002). In PDZRhoGEF, the equivalent position is occupied by a RhoA-preferred Ile.

It was also noted (Snyder et al., 2002) that both Asp45 and Glu54 are unique to RhoA, and are replaced by small and neutral residues in both Rac and Cdc42. All GEFs active on RhoA have Lys or Arg in a position equivalent to Lys758 DH of Dbs, which forms a double salt-bridge with Asp45 and Glu54 (Snyder et al., 2002). Indeed, the PDZRhoGEF has an Arg in this position (Arg868 DH), as do its homologs LARG and p115. Another suggested determinant was Arg5 RhoA, which was thought to make a favorable interaction with a Gln residue in RhoA. This bulky residue is seen in the Dbs-RhoA structure to be sequestered between Leu759 DH and Leu766 DH, equivalent in PDZRhoGEF to Leu869 DH and Ile876 DH. It has been shown that the Leu766 DH → Ile mutation in Dbs substantially increases its catalytic activity on RhoA, from 48-fold to 267-fold (Cheng et al., 2002), with little impact on Cdc42 (Cheng et al., 2002). This mutation also confers 57-fold rate enhancement on Dbs against Rac (Cheng et al., 2002). In PDZRhoGEF, the equivalent position is occupied by a RhoA-preferred Ile.
its homologs. Of particular interest are two salt bridges, residues in the 5 helix of the DH domain, we identified 90 waters expected interactions involving Trp58 of RhoA and the residues in the α5 helix of the DH domain, we identified several other interactions unique for RhoA, notably those involving Arg5, Asp76, and Asp40. Further mutational studies will establish the individual contributions of these interactions to the overall selectivity of PDZRhoGEF and other members in this family. The PH domain makes contact with RhoA, but the resulting interface is small, and it is not immediately obvious if the PH domain participates directly, by providing stabilization to the C-terminal part of the α6 helix of the DH domain. Further experiments, under way in our laboratories, will resolve this issue.

While this paper was being reviewed, a study of a related complex involving the DH/PH fragment of LARG was published online ahead of print (Kristelley et al., 2004). In spite of significantly lower resolution of data than those reported here (i.e., 3.2 Å versus 2.5 Å), the authors observe a mutual disposition of the DH/PH fragment of LARG and also in Lsc, Trio/C, Vav, and Vav2, all of which are active on RhoA. Further, Lbc and Lfc, both of which are known to act on RhoA (Glaven et al., 1996) have a Glu in this position, suggesting a similar function.

In addition to these predicted interactions, our structure reveals additional features that may substantially enhance the selectivity and activity of PDZRhoGEF and its homologs. Of particular interest are two salt bridges, Arg872DH with Asp76 RhoA and Arg867DH with Glu40 RhoA. Position 872 is occupied in the PDZRhoGEF family GEFs by Arg or Lys, and a favorable interaction is possible uniquely with RhoA, because the position equivalent to the charged Asp76 is occupied by a neutral Gin in both Cdc42 and Rac. Arg867DH is conserved among the PDZRhoGEF family members, and the position is often occupied by positively charged residues in other GEFs acting on RhoA, such as Lbc or Lfc. Altogether, the PDZRhoGEF–RhoA interface contains a number of highly selective interactions, involving a number of salt bridges, exploiting the unique electrostatic potential surface of RhoA.

Conclusion

In this paper, we present evidence that PDZRhoGEF is a likely candidate to serve as a molecular coupling between G protein-coupled receptors and RhoA in smooth muscle, with a potentially critical role in Ca2+ sensitization. It was recently shown, that in the HEK 293T and PC-3 prostate cancer cells, the thrombin receptor activates RhoA via LARG, while the LPA stimulation of RhoA is due to PDZRhoGEF (Wang et al., 2004). Thus, the RGSL-containing family of nucleotide exchange factors emerges as a physiologically important and ubiquitous class of signaling molecules. The 2.5 Å resolution crystal structure of the complex of the DH/PH fragment with RhoA, reported here, reveals an extensive and specific interface between the DH domain and the GTPase, fully rationalizing the observed specificity and selectivity of PDZRhoGEF and its homologs. In addition to the expected interactions involving Trp58 of RhoA and the residues in the α5 helix of the DH domain, we identified several other interactions unique for RhoA, notably those involving Arg5, Asp76, and Asp40. Further mutational studies will establish the individual contributions of these interactions to the overall selectivity of PDZRhoGEF and other members in this family. The PH domain makes contact with RhoA, but the resulting interface is small, and it is not immediately obvious if the PH domain participates directly, by providing stabilization to the C-terminal part of the α6 helix of the DH domain. Further experiments, under way in our laboratories, will resolve this issue.

While this paper was being reviewed, a study of a related complex involving the DH/PH fragment of LARG was published online ahead of print (Kristelley et al., 2004). In spite of significantly lower resolution of data than those reported here (i.e., 3.2 Å versus 2.5 Å), the authors observe a mutual disposition of the DH/PH and RhoA molecules that appears to be consistent with our
results. Detailed comparison will be possible upon the release of the coordinates.

Experimental Procedures
Expression and Purification
The DH/PH fragment (residues 712-1081) and DH domain (residues 729-939) of human PDZ-RhoGEF were expressed as fusion proteins with GST in E. coli. E. coli strain (Stratagene). Both fusion proteins were purified as described previously (Oleksy et al., 2004), except for using an anion exchanger HiTrap Q Sepharose (Amer sham Pharmacia Biotech) instead of Superdex-75 size exclusion column (Amer sham Pharmacia Biotech). The purified DH/PH and DH proteins were concentrated in 50 mM Tris-HCl, [pH 7.5], 20 mM NaCl, and 1 mM DTT. Human full-length RhoA (residues 1–193), truncated RhoA (residues 1–181), full-length Cdc42 (1–191 aa), and full-length Rac1 (residues 1–192) were expressed in pETUnie vector (Sheffield et al., 1999) in fusion with a Hisα-tag also in BL21(DE3) RIL. The GTases were purified by Ni-NTA-agarose affinity chromatography in 50 mM Tris-HCl, 400 mM NaCl, 1 mM MgCl2, 5 mM imidazole, [pH 8.0], and eluted with 150 mM imidazole buffer. Final purification was carried out using gel filtration. Before fluorescence exchange assays, bacterially expressed RhoA, Cdc42, and Rac1 were incubated with excess GDP (ICN Biomedicals, Inc.) in the presence of EDTA. After 1 hr, excess of MgCl2 was added and the unbound nucleotide was removed using a HiPrep desalting column (Amer sham Pharmacia Biotech).

The SeMet labeled DH/PH tandem was expressed using the pHisMBP vector (gift from Dr. D. Waugh, NCI) and the Met auxotrophi DL41 E. coli strain. The cultures were grown in the LeMaster media at 37°C. Protein expression was induced at a high OD600 of ~3.5 with 1 mM IPTG. The cultures were incubated at room temperature for 24 hr. The cells were harvested by centrifugation. The pellet was resuspended in lysis buffer (50 mM Tris-HCl, [pH 7.5], 300 mM NaCl, 5 mM Met, and 10 mM imidazole) and disrupted. The supernatant was incubated at 4°C with Ni-NTA (Qiagen) resin for 1 hr. After washing the resin with 4 liter of lysis buffer, the protein was eluted in 1 ml fractions with elution buffer (lysis buffer containing 150 mM imidazole). Fractions containing the HisMBP-DH/PH fusion protein were incubated overnight with the rTEV proteinase (Kapust et al., 2001) at 10°C. After removal of imidazole using a desalting column, the SeMet labeled DH/PH was separated from cleaved HisMBP using Ni-NTA resin as described above. The concentrated protein was further purified using size-exclusion chromatography column (Superdex 200 16/60, Amersham Pharmacia Biotech) and mixed with a small amount of F25N mutant of truncated RhoA. The sample was dialyzed against 20 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, and 5 mM EDTA [pH 7.1] overnight at 4°C in order to remove Mg2+ and the nucleotide. The SeMet DH/PH-RhoA complex was purified from excess of RhoA using Superdex 200 size-exclusion column equilibrated with 20 mM Tris-HCl, [pH 7.2], 150 mM NaCl, and 1 mM TCEP.

Western Blot Analysis for PDZ-RhoGEF
Supernatants from whole tissue homogenate were solubilized in 1× Laemmli sample buffer and clarified (800 × g, 10 min) before SDS-PAGE. Homogenates were run on 10% SDS-PAGE and were transferred to PVDF (polyvinylidene difluoride) membranes. Membranes were blocked with 5% non-fat dry milk in phosphate-buffered saline containing 0.05% Tween-20 (PBS-T) for 1 hr at room temperature. Membranes were incubated overnight at 4°C (1:1000) in a polyclonal primary antibody for PDZ-RhoGEF prepared in rabbit, a gift from Dr. Silvio Gutkind, followed by washing in PBS-T and incubation with horseradish peroxidase-conjugated secondary antibody to rabbit for 1 hr at room temperature and developed with enhanced chemiluminescence (ECL, Amersham Pharmacia Biotech). Membranes were stripped and reblotted with a smooth muscle anti-α-actin antibody to normalize for protein load.

Guanine Nucleotide Exchange Assays
Fluorescence spectroscopic analysis using the N-methylanthraniloyl-GTP (mant-GTP) was performed with a Jasco FP-750 spectrofluorometer. Mant-GTP was synthesized according to the published pro-
Refmac5 (Murshudov et al., 1997) for refinement. NCS restraints were applied throughout the refinement. The final refinement was carried out using native data at 2.5 Å resolution. At the stage when R_{cryst} was 22.4% and R_{free} was 28.1%, the model was refined against all reflections. The final model contains 9525 atoms (8661 protein and 591 solvent atoms). The model has 90.3% of all residues in the core regions. The mean temperature (B) factor for all atoms is 65.8 Å² (Table 2).

Acknowledgments

We gratefully acknowledge Holly Barton, Natalya Olekhnovich (University of Virginia), and Agnieszka Gajewska-Naryniecka (University of Wrocław) for excellent technical assistance. We also thank Filip Jeleń (University of Wrocław) for providing mant-GTP and Rho-GTPases; Dr. Silvio Gutkind (NIH) for the PDZ/RhoGEF antibody; Dr. David Waugh (UVA) for help with computing and figure preparation. This work was supported by an NIH Grant PO1 HL48807 to A.V.S. The Z.S.D. wild-type catalytic proficiency. Protein Eng. 2004. 10.1074/jbc.M406056200. Biology of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca²⁺. J. Biol. Chem. 264, 5339–5342.

Accession Numbers

The atomic coordinates were deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, New Jersey under the accession code 1xcg.pdb.