PDZ Tandem of Human Syntenin: Crystal Structure and Functional Properties

Beom Sik Kang,1,4 David R. Cooper,1,4 Filip Jelen,2,4 Yancho Devedjiev,1 Urszula Derewenda,1 Zbigniew Dauter,2 Jacek Otlewski,2 and Zygmunt S. Derewenda1,4
1 Department of Molecular Physiology and
Biological Physics and
The Cancer Center
University of Virginia
Charlottesville, Virginia 22908
2 Laboratory of Protein Engineering
Institute of Biochemistry and Molecular Biology
University of Wroclaw
Tamka 2
50-137 Wroclaw Poland
3 Synchrotron Radiation Research Section
Macromolecular Crystallography Laboratory
NCI
Brookhaven National Laboratory
Upton, New York 11973

Summary
Syntenin, a 33 kDa protein, interacts with several cell membrane receptors and with merlin, the product of the causal gene for neurofibromatosis type II. We report a crystal structure of the functional fragment of human syntenin containing two canonical PDZ domains, as well as binding studies for full-length syntenin, the PDZ tandem, and isolated PDZ domains. We show that the functional properties of syntenin are a result of independent interactions with target peptides, and that each domain is able to bind peptides belonging to two different classes: PDZ1 binds peptides from classes I and III, while PDZ2 interacts with classes I and II. The independent binding of merlin by PDZ1 and syndecan-4 by PDZ2 provides direct evidence for the coupling of syndecan-mediated signaling to actin regulation by merlin.

Introduction
Syntenin is a 298 residue long cytosolic protein, originally identified as a molecule linking syndecan-mediated signaling to the cytoskeleton [1]. Subsequently, syntenin was also found to play a role in protein trafficking [2, 3], cell adhesion [4], and activation of the transcription factor Sox4 [5]. Of particular medical interest is the recent report that syntenin is overexpressed in breast and gastric cancer cells and promotes their migration and metastasis [6]. The diverse biological functions of this protein are a result of its interactions with numerous targets. There are currently at least ten putative binding partners reported for syntenin, including IL-5 receptor α subunit (IL5Rα) [5], neuroglin [7], proTGF-α [3], glutamate receptors [8], neurofascin [7], syndecan-4 [1], ephrin B [9, 10], ephrin A7 [9], PTP-η [11], neurofibrin I [12], and merlin [13]. All the binding partners of syntenin are receptors except for merlin, a cytosolic tumor repressor that is a product of the causal gene for type II neurofibromatosis (NF) [14]. Merlin belongs to the protein 4.1 superfamily, which also includes ezrin, moesin, and radixin, and like its homologs, it binds actin [15].

Based on amino acid sequence analyses, syntenin was predicted to contain a tandem of PDZ domains (PDZ1 and PDZ2) preceded by an N-terminal fragment of 112 amino acids of an unknown structure. PDZ domains are ubiquitous signaling domains, with over 400 distinct copies in the human genome [16, 17], which mediate protein–protein interactions. They may occur in proteins harboring other domains, such as SH2, RGSL, PH, DH, or GUK, but are also found in proteins that contain no other domains: an extreme example, MUPP, is a scaffolding protein with 13 PDZ domains [18]. Through the PDZ domains, signaling proteins bind to receptors, channels, and other targets, often functioning as membrane-associated scaffolds for the assembly of signaling complexes. Finally, PDZ-containing proteins provide a means for subcellular targeting of their partners, as exemplified by the function of Lin-2/CASK [19], Lin-10/MINT1 [20], and GRIP [21, 22].

PDZ domains are structurally conserved modules, about 90 amino acids in length, with a distinct fold of six β strands and two α helices [23, 24]. In most cases, they recognize C-terminal sequence motifs of target proteins and bind these peptides in a pocket between the β2 strand and α2 helix. The PDZ domains are typically grouped into three classes depending on the target tripeptides: class I (-S/T-X-φ), class II (-φ-X-φ), and class III (-D/E-X-φ) [17]. Examples outside this paradigm are well documented, and some PDZ domains show degenerate specificity [25]. It has also been reported that interaction between adjacent PDZ domains may modulate peptide binding, further complicating the picture. For example, the PDZ1-PDZ2 tandem within PSD-95 appears to have different binding properties compared to its isolated PDZ domains [16].

The multitude of syntenin’s putative partners, which belong to all three classes of target proteins, suggests that its PDZ domains may also exhibit degenerate specificities. Furthermore, it has been reported that the two domains function in a cooperative fashion: for example, isolated PDZ1 and PDZ2 apparently fail to bind merlin- and IL5Rα-derived peptides, whereas binding was reported for full-length protein [5, 13]. A requirement for the complete tandem was also reported for interaction with PTP-η [11] and proTGF-α [3], whereas syndecan-2 was reported to bind to PDZ1-PDZ2 or PDZ2-PDZ2 tandem, but neither the isolated domains nor PDZ1-PDZ1 [12].

In order to explain the molecular basis for the ob-

Key words: PDZ; syndecan; merlin; schwannoma; cancer; crystallography; calorimetry

*Correspondence: zsd4n@virginia.edu
1 These authors contributed equally to this work.
served properties of syntenin, we have initiated a systematic study aimed at characterizing syntenin’s molecular structure and mechanism of action. Here, we report the crystal structure of the intact PDZ tandem, residues 113–273, refined at 1.94 Å resolution. The structure reveals two PDZ domains that have fully solvent-accessible peptide binding pockets. We also report the results of rigorous biophysical binding assays for isolated PDZ domains, the PDZ tandem, and full-length syntenin, with peptides derived from three selected putative binding partners for syntenin: ILSRxα, syndecan-4, and merlin. These data reveal that the binding properties of syntenin are a result of the independent binding events of the two PDZ domains, whose specificities show clear degeneracy. The merlin-derived octapeptide shows the highest affinity for syntenin, and a distinct selectivity for PDZ1. This result reaffirms that merlin is a physiologically important partner for syntenin.

Results and Discussion

Model Quality and Structure Overview

The structure was solved with a three-wavelength MAD experiment, using a SeMet-labeled protein crystal. The model, refined at 1.94 Å resolution to a crystallographic R value of 18.4% (Rfree 22.7%), contains a noncrystallographic dimer of tandems in the asymmetric unit and a total of 325 residues (Table 1; Figure 1). The only syntenin residue not included in the model is the C-terminal phenylalanine of the second monomer. The refined structure conforms well to standard protein stereochemistry, with rms deviation from ideal bond lengths of 0.015 Å, and with only 2 residues falling into disallowed regions of the Ramachandran plot as judged by MolProbity [26]. Only seven side chains are not visible in the α,β-weighted 2mFobs – DFcalc electron density map contoured at 1σ (Figure 1C), and their occupancies were set to zero. The average isotropic temperature factor (B) for main chain atoms is 20.6 Å², with the highest temperature factors (~50 Å²) associated with the linker peptides and the C-terminal end of the α2 helix of PDZ1, all of which are nonetheless clearly visible.

The crystallized fragment of syntenin contains two PDZ domains conjoined by a short linker (Arg193-Pro194-Phe195-Glu196; Figure 1C). Like other domains from this superfamily, the syntenin PDZ modules show a typical fold with two opposing antiparallel β sheets capped by two α helices. Each domain has at least one β strand that is partly contained in both sheets. In the crystal, the two PDZ tandems of syntenin are arranged in a head-to-tail fashion, related by a noncrystallographic dyad, giving the contents of the asymmetric unit the appearance of a four-leaf clover. Interestingly, the linker residue Arg193 forms a salt bridge with Glu240 in PDZ2 and forms a hydrogen bond via its N atom with a main chain carbonyl group of Phe154 in PDZ1. This may help to explain why Arg193 falls into a disallowed region of the Ramachandran plot. Superposition of the monomers reveals that there is a slight difference in the angle between the two PDZ domains in the two monomers, explaining why the dimer is noncrystallographic. This suggests that the linker has considerable intrinsic flexibility in solution.

We note that the interaction between the two PDZ domains within a monomer is less extensive than the intermolecular PDZ1-PDZ2 interface. A total of 446 Å² of solvent-accessible surface is buried by each intermolecular interaction. Furthermore, this interface is fairly intimate, with a number of hydrogen bonds between the two domains. The few solvent molecules that are at this interface mediate contacts between the two domains. In contrast, there are no direct hydrogen bonds between the PDZ domains within a monomer. Both putative peptide binding grooves of syntenin are located on the same face of the tandem monomer and are completely exposed to the solvent, suggesting that syntenin has two distinct and functional peptide binding sites.

Structure of the PDZ Domains of Syntenin

A structural comparison of the two PDZ domains of syntenin reveals that, in spite of a modest level of sequence identity (26%), they are structurally very similar to each other, with an rms deviation of 1.2 Å on Cα atoms. In both domains, the fragment equivalent to the signature GLGF loop involved in the terminal carboxylate binding deviates from the paradigm by an insertion of a basic residue after the initial glycine (Arg in PDZ1 and His in PDZ2). Such insertions are rarely found in PDZ domains, but they do not seem to disturb the cluster of main chain amides that coordinate the incoming carboxylate of the target peptide. Typically, a Lys or Arg located 4 or 5 residues prior to this loop assists in peptide binding via a water-mediated hydrogen bond. Both of syntenin’s PDZ domains have a lysine 4 residues before the initial glycine.

In spite of these similarities, there are some notable differences between the two domains. The most apparent is the length of the β2-β3 loop. When compared to PDZ2, where this loop is shorter than in most other PDZ domains, PDZ1 contains an insertion of 4 residues in the β2-β3 loop (KSIDNGIF versus KN---GK). Furthermore, in PDZ1, the peptide binding groove is narrower as compared to PDZ2 or other PDZ domains (Figure 2A). This is best illustrated by comparing the distance from the beginning of α2 to the β2 strand of PDZ2, to the corresponding distance in PDZ1, which is 1.8 Å shorter.

The electrostatic potential surrounding the peptide binding groove is another significant difference between the two PDZ domains. The peptide binding surface of PDZ1 is predominately positively charged, surrounded by 3 residues (Lys124, Arg128, and Lys130) from β2 and 2 residues (His175 and Lys179) from α2. Other basic residues flank this region. PDZ2 lacks any clusters of positively charged residues, with His208 as the only charged side chain that extends over the peptide binding groove (Figure 2B).

As a peptide binds to PDZ domains, it mimics an additional antiparallel strand in the sheet containing β2. The position of the β2 strand in both of syntenin’s PDZ domains is consistent with this mechanism, with the amino and carboxyl groups of Leu129 and Phe211 available for hydrogen bonding. This type of arrangement dictates that the terminal side chain of the peptide faces the interior of the binding pocket. Both PDZ domains...
Table 1. Data Collection and Refinement Statistics

<table>
<thead>
<tr>
<th>Data Collection Statistics</th>
<th>Edge</th>
<th>Peak</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.97946</td>
<td>0.97900</td>
<td>0.97133</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>30.0–1.94 (2.01–1.94)</td>
<td>30.0–1.94 (2.01–1.94)</td>
<td>30.0–1.94 (2.01–1.94)</td>
</tr>
<tr>
<td>Total reflections</td>
<td>84,171</td>
<td>85,123</td>
<td>86,109</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>22,557</td>
<td>22,608</td>
<td>23,095</td>
</tr>
<tr>
<td>Redundancy</td>
<td>3.7</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.4 (75.1)</td>
<td>97.1 (71.9)</td>
<td>98.8 (90.2)</td>
</tr>
<tr>
<td>Rsym (%)</td>
<td>4.9 (25.9)</td>
<td>6.2 (31.2)</td>
<td>4.8 (31.1)</td>
</tr>
<tr>
<td>Average I/σ(I)</td>
<td>20.2</td>
<td>23.1</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Phasing Statistics

<table>
<thead>
<tr>
<th>Phasing power, iso/ano</th>
<th>0.370/0.27</th>
<th>0.230/0.35</th>
<th>—/0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsym, iso/ano</td>
<td>0.430/0.69</td>
<td>0.710/0.57</td>
<td>—/0.66</td>
</tr>
</tbody>
</table>

Overall figure of merit (acentric): 0.68

Refinement Statistics

<table>
<thead>
<tr>
<th>Resolution (Å)</th>
<th>30.0–1.94 (1.99–1.94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflections (working)</td>
<td>21,926 (1,560)</td>
</tr>
<tr>
<td>Reflections (test)</td>
<td>1,182 (79)</td>
</tr>
<tr>
<td>Rmax (%)</td>
<td>22.7 (25.2)</td>
</tr>
<tr>
<td>Number of waters</td>
<td>254</td>
</tr>
<tr>
<td>Rms deviation from ideal geometry</td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.015</td>
</tr>
<tr>
<td>Angles (°)</td>
<td>1.80</td>
</tr>
<tr>
<td>Average B factor (Å²)</td>
<td>20.6</td>
</tr>
<tr>
<td>Main chain</td>
<td>26.3</td>
</tr>
<tr>
<td>Side chain</td>
<td>47.0</td>
</tr>
</tbody>
</table>

Stability Studies

Although the crystal structure indicates that both PDZ domains of syntenin are capable of binding peptides, many previously reported binding studies using isolated PDZ1 and PDZ2 domains have failed. In order to better assess the feasibility of performing binding assays with isolated PDZ1 or PDZ2, we conducted stability studies using chemical denaturation monitored by circular dichroism (Figure 3). Full-length syntenin, the PDZ tandem, and isolated PDZ1 (residues 113–193) and PDZ2 (residues 197–273) were used in the assay. Surprisingly, we found that the isolated PDZ1 and PDZ2 have significantly different stabilities: the free energy of unfolding, ΔG_unf for PDZ1 is −3.2 kcal/mol, whereas for PDZ2 it is −4.8 kcal/mol, putting it closer to the average of 5–15 kcal/mol observed for globular proteins. Based on these values, the expected denaturation of the tandem, as simulated by combining single domain transitions, should be less cooperative, with a ΔG_unf of −2.07 kcal/mol (Figure 3, insert). However, the experimental unfolding of the tandem follows a cooperative, two-state profile, with a ΔG_unf of −4.1 kcal/mol, suggesting that the domains are associated into a single entity undergoing cooperative denaturation. As already noted, PDZ1 of one molecule interacts with PDZ2 of the adjacent one in the crystal structure. The large buried interface suggests that the interaction could be physiologically relevant, as indeed self-association has been reported for syntenin [7]. It is also possible that the two domains interact in this way within a monomer, and that the crystal structure corresponds to a domain-swapped conformation. Whereas our data are consistent with weak, albeit identifiable domain-domain interactions in syntenin, further work will be required to probe this issue.

Finally, we note that the full-length protein also unfolds in a highly cooperative manner, and shows signifi-
cantly higher stability (ΔG_{m} of -6.4 kcal/mol) than any of the other constructs. This result may imply that the N-terminal fragment of syntenin is folded and plays a structural role in the protein, possibly interacting with the PDZ domain(s), so that full-length syntenin denatures as a single entity.

Binding Properties of Syntenin and of Isolated PDZ Domains

In the case of full-length syntenin and the PDZ tandem, we were interested in both the affinities and the stoichiometries of peptide binding. With that in mind, we carried out binding assays using isothermal titration calorimetry...
Structure of the PDZ Tandem from Syntenin

Figure 2. A Comparison of PDZ1 and PDZ2 Domains of Syntenin
(A) Superposition of the two PDZ domains of syntenin. PDZ1 is gold and PDZ2 is blue. The α2 helices have been superposed to show the similarity of the fold, yet emphasize the differences of the peptide binding groove. The same orientation is used for all three figures.
(B) The peptide binding surface of PDZ1. The electrostatic potential surface is shown with select residues that surround the peptide binding groove labeled. A superposed C-terminal CRIPIT-derived peptide from the structure of PSD-95 (1BE9 [23]) is shown semitransparent, with side chains represented as cyan spheres in the β carbon position. The approximate locations of the P0, P−1, and P−2 binding pockets are indicated by gold, pink, and green circles, respectively.
(C) The peptide binding surface of PDZ2 represented as described in (B). Figures were made using MOLSCRIPT [47] (A) and POVSCRIPT+ (http://people.brandeis.edu/~fenn/povscript/) (B and C) and rendered with RASTER3D [48]. Electrostatic potentials were calculated in GRASP [49].

(ITC). The assays were conducted with the following hexapeptides derived from three putative targets of syntenin, each belonging to one of the three canonical classes: LEDSVF (IL5Rα) representing class I, TNEFYA (syndecan-4) from class II, and AFFEEL (merlin) from class III. We found that all peptides bind to full-length syntenin and to PDZ tandem with dissociation constants (Kd) in the low μM range (Figure 4; Table 2). Interestingly, the IL5Rα-derived peptide shows a stoichiometry of 2:1 for the tandem, but only 1:1 for full-length syntenin, whereas all other measurements indicate equimolar complexes. This is further evidence that suggests a functional role for the N-terminal domain.

To assess whether residues upstream of the C-terminal hexapeptide contribute to binding, we performed the assays with octapeptides for merlin and IL5Rα. The results are very similar for IL5Rα, but the merlin octapeptide binds an order of magnitude more tightly than the corresponding hexapeptide, indicating the functional importance of residues -6 and -7.

The determination of Kd values for isolated domains by ITC proved difficult, because PDZ1 aggregated at the required high concentration and isolated PDZ2 (residues 197–273) was prone to oligomerization (data not shown). To overcome the aggregation problems, we used a fluorescence-based approach using dansylated hexapeptides, allowing for significantly lower protein concentration [27]. We also changed the PDZ2 construct to residues 197–298, which includes syntenin’s natural C-terminus. To assess whether either the technique or

Figure 3. Stability of Syntenin Constructs
GdmCl-induced unfolding of PDZ1 (∆), PDZ2 (▲), tandem of PDZ domains (▪), and full-length (●) of syntenin. Measurements were performed in 25 mM Tris, 50 mM NaCl (pH 7.4). Transitions were monitored by the changes of the CD signal at 222 nm. Data were normalized as “fraction unfolded” and fitted to the equation in the text. Insert: combined single domain transitions (△) and tandem of PDZ domains transition (●).
Figure 5. Binding of Dansyl-Labeled Peptides to Syntenin

Binding of dansyl-RVAFFEEL to PDZ1 (+), dansyl-AFFEEL to PDZ1 (●), dansyl-LEDSVF to PDZ1 (■), and PDZ2 (▲) and dansyl-TNEFYA to PDZ2 (△). Data were normalized as “fraction bound,” so that the initial fluorescence was zero and the fluorescence at saturation was equal to unity.

with the 2:1 stoichiometry observed by ITC. The merlin-derived peptide shows no significant affinity toward PDZ2, but binds to PDZ1, to the tandem and the full-length protein, with almost identical K_d values in the sub-μM range. The merlin octapeptide binds to PDZ1 with significantly higher affinity than the hexapeptide, in agreement with the ITC results. The syndecan-4 peptide interacts exclusively with PDZ2, with an affinity virtually identical to those observed for the PDZ tandem and full-length syntenin. This result is again consistent with the 1:1 stoichiometry determined by ITC. However, it is in conflict with the previously reported 2:1 stoichiometry for the whole C-terminal domain of syndecan-2 [12].

It has been suggested previously that the N-terminal fragment of syntenin plays a regulatory function. For example, the association of PTP-1B with syntenin was shown to be regulated by tyrosine phosphorylation [11]. This indicates that the N-terminal fragment may, at least under some conditions, regulate the availability of at least one of syntenin’s peptide binding pockets. Our data do not provide a clear answer in

Table 2. Isothermal Calorimetry of Syntenin Interactions

<table>
<thead>
<tr>
<th></th>
<th>LEDSVF (IL5Rα)</th>
<th>ETLEDVF (IL5Rα)</th>
<th>AFFEEL (Merlin)</th>
<th>RVAFFEEL (Merlin)</th>
<th>TNEFYA (Syndecan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDZ Tandem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_d (μM)</td>
<td>43.8</td>
<td>32.2</td>
<td>11.6</td>
<td>200 nM</td>
<td>2.9 μM</td>
</tr>
<tr>
<td>n (μM)</td>
<td>2.26</td>
<td>2.07</td>
<td>0.94</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>ΔH (kJ)</td>
<td>−2.1</td>
<td>−7.6</td>
<td>−7.1</td>
<td>−3.1</td>
<td>−5.4</td>
</tr>
<tr>
<td>Full-Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_d (μM)</td>
<td>19.5</td>
<td>10.1</td>
<td>8.9</td>
<td>869 nM</td>
<td>2.5 μM</td>
</tr>
<tr>
<td>n (μM)</td>
<td>1.09</td>
<td>1.12</td>
<td>1.3</td>
<td>1.16</td>
<td>1.14</td>
</tr>
<tr>
<td>ΔH (kJ)</td>
<td>−4.7</td>
<td>−8.8</td>
<td>−8.9</td>
<td>−7.3</td>
<td>−9.8</td>
</tr>
</tbody>
</table>

Dissociation constants, stoichiometries, and enthalpies for the interactions of the IL5Rα-, merlin-, and syndecan-derived peptides, with the PDZ tandem of syntenin and full-length protein, determined by ITC. Representative data are shown for experiments that were conducted at least twice for each interaction.
Syntenin: A Link between Syndecan and the Actin Cytoskeleton

The biological function of syntenin and its domain structure appear to have been stringently guarded by evolutionary mechanisms. The present study strongly supports earlier suggestions that merlin is a physiologically relevant partner for syntenin. Because merlin is an actin binding protein, syntenin may provide another link for syndecan-regulated signaling to the cytoskeleton, with syntenin mediating the colocalization of syndecan, through PDZ2, and merlin, through PDZ1. It will be comparable to the current model of syndecan signaling to actin, through PDZ-containing CASK and protein 4.1 [29] or direct binding to another of the ERM proteins, ezrin [30, 31]. The FERM domain of merlin binds ezrin and could block the interaction of ezrin to actin [31]. This alternate anchoring signal pathway may give clues regarding the involvement of syntenin in metastasis or the tumor suppressor function of merlin. The identification of the syntenin homolog in Anopheles prompted us to look in the mosquito’s genome for the homologs of merlin and syndecan. We found an annotated merlin homolog with a 57% amino acid identity to the human protein and fully conserved C-terminal RVAFFEEL sequence. Similarly, we found the presence of a syndecan-related protein, with a highly conserved C terminus containing the TNEFYA motif.

Biological Implications

Syntenin is a ubiquitous protein involved in protein targeting and multiprotein assembly, and it is overexpressed in certain cancer cell lines. As inferred from numerous yeast two-hybrid screens and other biochemical assays, syntenin binds biologically important receptors such as IL5Rα and syndecan, as well as the cytosolic actin regulator merlin, which is a tumor suppressor and a product of the causal gene of neurofibromatosis type II. The crystal structure of the biologically functional fragment of syntenin, residues 113–273, solved at 1.94 Å resolution, reveals the presence of two canonical PDZ domains, connected by a 4 residue linker. Both domains appear to be free to interact with target peptides. It is the first crystal structure containing more than one PDZ

<table>
<thead>
<tr>
<th>PDZ-PDZ</th>
<th>PDZ1</th>
<th>PDZ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-EDSFV</td>
<td>18.5 μM (±3.2)</td>
<td>6.8 μM (±1.1)</td>
</tr>
<tr>
<td>DNS-FFEEL</td>
<td>10.6 μM (±0.8)</td>
<td>5.0 μM (±0.7)</td>
</tr>
<tr>
<td>DNS-VAFFEEL</td>
<td>1.9 μM (±0.3)</td>
<td><0.6 mM</td>
</tr>
<tr>
<td>DNS-NEFYA</td>
<td>0.3) (Merlin)</td>
<td>0.8) (Merlin)</td>
</tr>
</tbody>
</table>

Dissociation constants for the interactions of the IL5Rα- merlin-, and syndecan-derived dansylated peptides, with the PDZ tandem of syntenin and isolated PDZ domains, determined by fluorimetric titration. Estimates of error are derived from experimental data.
domain from a single protein. Our binding studies, using stringent biophysical techniques such as isothermal titration calorimetry and fluorimetric titration, show that the properties of the tandem are the sum of the binding properties of the individual domains, with no detectable cooperative effects. Each domain is able to bind peptides belonging to two different classes: PDZ1 binds peptides corresponding to merlin and ILSR2 (classes I and III), whereas PDZ2 interacts with peptides derived from ILSR2 and syndecan-4 (classes I and II). The separate interactions of merlin with PDZ1 and that of syndecan-4 with PDZ2 suggest the physiological coupling of syndecan to merlin through syntenin. Because merlin binds actin, this pathway could be vital for merlin’s function as a tumor repressor. The recently completed genome of the malaria vector *Anopheles gambiae* contains homologs of both syntenin and merlin, indicating that this pathway has been conserved during evolution.

Experimental Procedures

Expression and Purification of Protein Samples

A syntenin clone was obtained from American Tissue and Culture Collection (ATCC 72537). The DNA encoding full-length (residues 1–298), PDZ tandem (113–273), PDZ1 (113–193), and PDZ2 (197–273 and 197–298) domains of syntenin were amplified by PCR and cloned into the parallel vector pGST-parallel1 [32], a GST-fusion protein expression vector containing the recombinant TEV protease (rTEV) cleavage site. The integrity of the insert was verified by direct DNA sequencing. The expression of the proteins was induced by 1 mM IPTG in *E. coli* BL21 strain (Stratagene). The SeMet-labeled PDZ tandem was expressed in the D834 strain (Novagen) with M9 medium with addition of SeMet. The expressed proteins were purified by affinity chromatography using a glutathione-Sepharose 4B (Amersham Pharmacia Biotech). The recombinant protein was subjected to a HiPrep 26/10 desalting column (Amersham Pharmacia Biotech) equilibrated with 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.5 mM EDTA, 1 mM DTT. After complete digestion, the GST tag was removed using a glutathione-Sepharose 4B column. A gel filtration was performed with a Superdex G75 column (Amersham Pharmacia Biotech) equilibrated with 20 mM Tris-HCl (pH 7.5), and the fractions containing the PDZ tandem were collected and concentrated using Centriprep YM10 for crystallization screening. The purified proteins contain an additional five amino acids (GAMDP) at the N terminus due to the cloning procedure.

Crystallization and Data Collection

Crystal Screen (Hampton Research) was used for preliminary screening. Subsequently, crystallization conditions were optimized around 0.1 M sodium acetate (pH 4.6) containing 24% PEG4000 and 0.2 M ammonium acetate. The sitting drop vapor diffusion method was used for all crystallization trials. Drops were formed with 3 μl of protein solution (6 mg/ml) and 3 μl of reservoir buffer, and were overlaid with 15 μl of a 1:1 mixture of silicon and mineral oil. Crystallization trays were stored at 21°C. The best crystals were obtained after microseeding. The crystals used for data collection
were briefly soaked in the crystallization buffer containing 12.5% (v/v) glycerol and frozen by immersion in liquid nitrogen. The structure was solved using a three-wavelength MAD experiment with SeMet-labeled crystals, with 180 images (1° rotation) collected for each wavelength. Data were collected at 0.9794 Å (edge wavelength), 0.97133 Å (remote wavelength), and 0.97900 Å (peak wavelength). The crystals are in space group C2, with unit cell parameters a = 100.7 Å, b = 48.7 Å, c = 74.7 Å, and β = 120.8°. All data were collected at beamline X9B at the NSLS, and processed and scaled using HKL2000 [53]. Data collection statistics are presented in Table 1. The programs SnB [34] and SHELSX [35] were used to locate six of the eight selenium atoms in the asymmetric unit. Phases were generated in SHARP [36] and improved by density modification in SOLOMON [37]. These phases were used as the starting point for automatic model building in ARP/wARP [38]. This generated 275 of the 332 residues in the asymmetric unit. After manually determining which of the resulting polypeptide chains belonged to each monomer in the asymmetric unit, ARP/wARP [38] was used to dock the side chains. Manual model building was performed in O [39]. All but one of the 322 syntenin residues in the asymmetric unit were included in the model, as were 4 N-terminal residues that are an artifact of subcloning. Solvent was added using ARP/wARP [38]. A combination of CNS [40] and REFMAC5 [41] was used to refine this initial model to an R factor of 18.4% and an Rfree of 22.7%. Maximum likelihood residuals were used throughout the refinement process. TLS refinement [42] and inclusion of experimental phase information [43] from SHARP were included in later stages of refinement to minimize the difference between Rmax and Rfree. MOLPROBITY [26] and OOPS2 [44] were used as validation tools during refinement and rebuilding. Refinement data are presented in Table 1.

Calorimetric Binding Assays
Prior to the experiment, the protein solution was extensively dialyzed at 4°C against 25 mM phosphate or 25 mM Tris-HCl, 150 mM NaCl (pH 8.0). The titration was performed using a 4200 isothermal titration calorimeter (CSC). The protein concentration in the sample cell was in the range of 0.1 to 0.3 mM with a cell volume of 1,250 μl. The titrated peptides were dissolved to the concentrations in the range of 3 to 8 mM in dialysis buffer and injected in 5–10 μl aliquots. All experiments were done at 25°C. The titration thermogram was analyzed with BindWorks Applied Thermodynamics software to obtain n, Kd, and ΔH values. Concentration of PDZ tandem and full-length syntenin was estimated using the Amax molar absorbance coefficient calculated from the number of Trp and Tyr residues [45]. The concentration of PDZ2 and peptides was estimated using the Amax molar absorbance coefficient calculated from the number of Phe residues in the molecules.

Fluorimetric Titrations
Binding of peptides to full-length syntenin and PDZ tandem and isolated domains did not produce detectable change in fluorescence. Therefore, N-terminally dansylated peptides were used to increase sensitivity. The concentration of dansylated peptide was determined using the molar absorbance coefficient of the dansyl group εmax = 4,600 M -1 cm -1. The binding was monitored by following the increase in fluorescence upon titration of a concentrated protein into a 1 cm × 1 cm stirred cell cuvette containing 1.2 ml of 25 mM Tris-HCl, 150 mM NaCl (pH 7.5) and 0.5 μM dansylated peptide. The protein stock concentration was in the range of 1–1.5 mM and recognition molecule neurofascin interacts with syntenin-1 but not with syntenin-2, both of which reveal self-associating activity. J. Biol. Chem. 274, 423–433.

The titrated peptides were dissolved to the concentrations in the range of 3 to 8 mM in dialysis buffer and injected in 5–10 μl aliquots. All experiments were done at 25°C. The titration thermogram was analyzed with BindWorks Applied Thermodynamics software to obtain n, Kd, and ΔH values. Concentration of PDZ tandem and full-length syntenin was estimated using the Amax molar absorbance coefficient calculated from the number of Trp and Tyr residues [45]. The concentration of PDZ2 and peptides was estimated using the Amax molar absorbance coefficient calculated from the number of Phe residues in the molecules.

Stability Measurements
Solvent denaturations were performed on a J-715 spectropolarimeter (Jasco) at 21°C with the automatic titrator (Jasco automatic titration system) in 25 mM Tris-HCl, 50 mM NaCl (pH 7.4) and the indicated concentration of guanidinium chloride (GdmCl). The transitions were monitored by the decrease of the CD signal at 222 nm and at 2 nm bandwidth. The apparent free-energy changes in the absence of GdmCl (ΔG°) were determined by fitting the ellipticity intensity changes at particular concentrations of GdmCl to the equation given elsewhere [46]. Analysis of the data was performed by the program Grafit 3.01 (Erithacus Software). GdmCl concentration was determined by refractometry.

Acknowledgments
This work was supported by the DOD grant DAMD17-01-1-0720 (to Z.S.D.). A NATO Collaborative Link grant to Z.S.D. and J.O. is gratefully acknowledged. J.O. is an International Scholar of the Howard Hughes Medical Institute. We thank Mary Lewis for excellent technical assistance. Z.S.D. thanks Dr. R.L. Biltonen (University of Virginia) for invaluable discussions.

References

carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733.

Accession Numbers
The coordinates of the syntenin PDZ tandem were deposited in the Protein Data Bank under the ID code 1N99.