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Dehydrogenation through
the looking-glass

Sir — During enzymatic nicotina-
mide adenine dinucleotide (NAD*)-
dependent dehydrogenation a hy-
dride anion leaves the substrate and
attacks the C4 atom of the NAD" py-
ridine unit, converting NAD" to
NADH. A subset of these reactions
is the oxidation of 2-hydroxy acids
to 2-keto acids (Fig. 1) in which a
hydride anion leaves the C2 atom
and a proton leaves the hydroxy
group of the substrate. An internal
property of this reaction is its double
stereospecificity; the 2-hydroxy acid
may have either the 1- or p-configu-
ration and the NAD' C4 atom may
accept hydride from either the A or
B side'. This reflects the fact that r-
and D-substrates are simply mirror
images of one another.

The classic examples of enzymes
catalysing the NAD'-dependent
transformation of 2-hydroxy acids to
2-keto acids are r-specific lactate
(LDH) and malate (MDH) dehydro-
genases, on which biochemical and
structural studies were begun long
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ago'. These proteins have topologi-
cally similar structures?®. Their active
sites contain a histidine/aspartate
pair which forms a ‘charge relay sys-
tem), similar to that first observed in
chymotrypsin?, providing proton
transfer, and an arginine whose
guanidine unit plays the role of an
anchor in binding the substrate car-
boxylate group (Fig. 1).

The p-specific NAD'-dependent
enzymes, catalyzing dehydrogena-
tion of p-2-hydroxy acids, are ho-
mologous to one another but have
no sequence homology to the L-spe-
cific family. The former family in-
cludes p-specific lactate, glycerate, 3-
phosphoglycerate,  2-hydroxy
isocaproate and erythronate-4-phos-
phate dehydrogenases*. While vari-
ous models derived from three-di-
mensional crystal analyses for L-spe-
cific enzymes are known®, no struc-
ture is yet available for a p-specific
enzyme. However, the p-specific de-
hydrogenases have sequence homol-
ogy’ to NAD'-dependent formate
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Fig. 1 Reaction mechanism. Scheme of NAD*-dependent dehydrogenation of 2-

hydroxy acids.
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dehydrogenase (FDH), whose three-
dimensional structure has recently
been determined”®. In spite of the
fact that formate is not a chiral sub-
strate and catalysis occurs at the C1
position (compared to C2 in 2-hy-
droxy acids) the FDH active site con-
tains several residues conserved
throughout the p-specific enzymes®.

The structures compared here are
the two L-specific enzymes: LDH
complexed with NAD* and oxamate,
PDB coordinate set 1ILDM (J.P.
Griffith & M.G. Rossmann, unpub-
lished), MDH complexed with NAD*
and sulphate, set 4AMDH? and the ‘-
specific’ bacterial FDH complexed
with NAD* and azide, set INAD"
(ref. 8). The use of FDH as a repre-
sentative of the p-specific enzyme
family is appropriate due to the prop-
erties assigned to the three catalytic
residues®. The role of Arg 284 is to
bind substrate and is similar to the
role of arginine in other dehydroge-
nases. His 332 is hydrogen bonded
to Gln 313, that is, an amide but not
an acid. In FDH this ‘catalytic’ histi-
dine is locked by the acid/amide re-
placement and loses its ability to
switch between charged and un-
charged forms, which is required in
mechanisms involving proton trans-
fer.

This fits into a scheme where de-
hydrogenation of formate does not
need a base, in contrast to dehydro-
genation of 2-hydroxy acids. The
glutamine residue in FDH is as-
sumed to be spatially equivalent to
glutamate in p-specific enzymes.
This is supported by three pieces of
information. First, from the se-
quence alignment®® there is a fully
conserved glutamine residue in for-
mate dehydrogenases, in contrast to
the fully conserved glutamate within
the family of the p-specific enzymes.
Second, from the three-dimensional
structure of FDH® this glutamine
residue is located in the active site as
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described above. Third, on the basis
of site-directed mutagenesis the same
glutamate residue was proposed to
be essential for catalysis and paired
with a catalytic histidine in p-specific
LDH".

As for L-specific LDH and MDH,
the reaction catalyzed by FDH occurs
on the A-side of the NAD" nicotina-
mide®'". The three structures were
superimposed, using only the ten at-
oms of the nicotinamide moiety (Fig.
2a). The superposition reveals sev-

eral interesting features. The inhibi-
tor molecules occupying the sub-
strate binding site appear to be lo-
cated in the same place for all three
enzymes because they catalyze reac-
tions on the same side of the nicoti-
namide. The three catalytic residues
in LDH and MDH overlap very
closely as these structures are topo-
logically similar®. The histidine resi-
dues in all three proteins (apart from
His 332 in FDH, where the imida-
zole plane is rotated to form a hy-

Fig. 2 Mirror-image related active sites. a, Superposition of the NAD nicotinamide moiety in L- (LDH in
magenta, MDH in red) and D-specific (FDH in green) 2-hydroxy acid dehydrogenases. The catalytic triad
(arginine, histidine and aspartate/glutamate), inhibitors occupying the substrate binding site (oxamate in
LDH, sulphate in MDH and azide in FDH) and the mirror plane relating the catalytic triad in L- and D-
specific enzymes are shown. b, The catalytic triad and inhibitors in LDH and MDH are inverted by the
mirror and fit well onto those of FDH.
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drogen bond to Gln 313 as men-
tioned above) also closely overlap.

An important conclusion from
the superposition is that the catalytic
residues in FDH and LDH/MDH are
related by a mirror (Fig. 2a). When
the three catalytic residues as well as
the inhibitor molecules in the1-spe-
cific LDH and MDH are inverted by
this mirror plane they superimpose
on those in the p-enzyme FDH (Fig.
2b)in a respectable manner for en-
zymes with no sequence homology.
The mirror plane passes approxi-
mately through the catalytic point as
the distance from the NAD* C4 atom
to the plane is 0.3 A. The three cata-
lytic residues in both 1- and p-spe-
cific dehydrogenases are essentially
placed in identical positions on the
two sides of the looking-glass.

In spite of the intrinsic asymme-
try of amino acids, the positions of
the side chains of the three catalytic
residues in enzymes from the two
families are related by mirror sym-
metry. Thus evolution has resulted
in these L- and p-specific enzymes
converging on mirror-related active
sites, solving the same, but also mir-
ror-inverted, catalytic problem.
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