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Merohedral or pseudomerohedral twinning of crystals cannot

be identi®ed from inspection of the diffraction patterns.

Several methods for the identi®cation of twinning and the

estimation of the twin fraction are suitable for macro-

molecular crystals and all are based on the statistical

properties of the measured diffraction intensities. If the

crystal twin fraction is estimated and is not too close to 0.5, the

diffraction data can be detwinned; that is, related to the

individual crystal specimen. However, the detwinning proce-

dure invariably introduces additional inaccuracies to the

estimated intensities, which substantially increase when the

twin fraction approaches 0.5. In some cases, a crystal structure

can be solved with the original twinned data by standard

techniques such as molecular replacement, multiple isomor-

phous replacement or multiwavelength anomalous diffraction.

Test calculations on data collected from a twinned crystal of

gpD, the bacteriophage � capsid protein, show that the single-

wavelength anomalous diffraction (SAD) method can be used

to solve its structure even if the data set corresponds to a

perfectly twinned crystal with a twin fraction of 0.5.

Received 3 March 2003

Accepted 23 September 2003

1. Introduction

Twinning occurs when a crystalline specimen consists of

multiple domains which are mutually reoriented according to

a speci®c transformation that does not belong to the symmetry

operations of the crystal point group but is related in some

way to the crystal lattice (Koch, 1992). The splitting or

cracking of crystals often encountered by practicing

crystallographers should not therefore be described as twin-

ning. The size of the twin domains is large in comparison with

the crystal cell dimensions, so that X-rays diffracted by the

separate parts do not interfere and the total diffraction

corresponds to the sum of intensities originating from indivi-

dual domains. This is in contrast to disorder in a crystal, where

there are differences in the location of the content of the

neighbouring unit cells. In the case of disorder (either static or

dynamic), diffracted X-rays represent the averaged (spatially

or temporally) content of all unit cells.

Twins can be classi®ed according to the mutual disposition

of the individual domains. Various kinds of twins have

different manifestations in reciprocal space, which has

important consequences for the process of structure solution

of twinned crystals. Donnay & Donnay (1974) differentiate

between twins with twin-lattice symmetry, characterized by a

single reciprocal lattice with all re¯ections perfectly over-

lapped, and twins with twin-lattice quasi-symmetry, with some



re¯ections originating from individual

separated domains. According to the

terminology introduced by Friedel

(1928), they correspond to merohedral

or non-merohedral twins, respectively.

Merohedral twins re¯ect the possibi-

lity of different non-equivalent orien-

tations of crystals within a lattice of

symmetry higher than the crystal point-

group (class) symmetry. This is possible

in the tetragonal, trigonal, hexagonal or

cubic systems, with lattices always

having the highest symmetry of the

system (holohedry). If the crystal class

is a subgroup of the lattice symmetry, e.g. with only a half

(hemihedry) or a quarter (tetartohedry) of its symmetry

elements, the unit cell of such a crystal transformed by a

symmetry operation of the holohedry but not belonging to the

crystal class will conform perfectly within the same lattice, but

will not be equivalent to the initial orientation. In reciprocal

space, such a transformation will lead to the exchange of

indices between non-equivalent re¯ections having different

intensities, as in Fig. 1. In general, the relation between

different twin domains may involve rotations, mirror re¯ec-

tions or point inversions, and all are observed in small-mole-

cule crystallography and mineralogy. Since proteins,

carbohydrates and nucleic acids are chiral, in macromolecular

crystallography the only possible twin operations are proper

rotations and further discussion will be restricted to twins

related by rotations. In Friedel's nomenclature, this corre-

sponds to relations between holoaxial hemihedry (maximum

rotational symmetry of the lattice) and holoaxial tetartohedry

(a half of the previous symmetry operations or a quarter of the

lattice holohedry) or holoaxial ogdohedry (a half of the

previous elements). Table 1 lists space groups that can lead to

merohedral twinning and speci®es the possible twinning

operations.

Merohedral twinning cannot be distinguished from the

appearance of the diffraction pattern, since re¯ections from

different twin components overlap perfectly as a consequence
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Figure 1
The schematic diffraction pattern of a hexagonal crystal in the P6 space group in two possible orientations within its hexagonal lattice of P622 (strictly
P6/mmm) symmetry, related by the twofold rotation around the a* axis. Since this twofold rotation does not belong to the crystal symmetry, re¯ections
with the same indices have different intensities in the two orientations (top). In the perfect twin, both orientations superimpose, and the diffraction
pattern acquires P622 symmetry (bottom).

Table 1
Crystal space groups that can be oriented in multiple non-equivalent ways within the crystal lattice.

In each case, the twinning operation and reindexing matrix are given. Other selections of twinning
operations are possible; the twofold rotations listed below are the simplest.

Space group Twin operation Reindexing Matrix

P4, (P41, P43), P42, I4, I41 Twofold || [110] hkl > khÿl 010/100/00ÿ1
P3, (P31, P32) Twofold || c hkl > ÿhÿkl ÿ100/0ÿ10/001

or twofold || [110] hkl > khÿl 010/100/00ÿ1
or twofold || [ÿ110] hkl > ÿkÿhÿl 0ÿ10/ÿ100/00ÿ1

R3 Twofold || [110] hkl > khÿl 010/100/00ÿ1
P321, (P3121, P3221) Twofold || c hkl > ÿhÿkl ÿ100/0ÿ10/001
P312, (P3112, P3212) Twofold || c hkl > ÿhÿkl ÿ100/0ÿ10/001
P6, (P61, P65), (P62, P64), P63 Twofold || [110] hkl > khÿl 010/100/00ÿ1
P23, P213, I23, I213, F23 Twofold || [110] hkl > khÿl 010/100/00ÿ1
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of the identity of the holohedral and merohedral lattice

metrics. However, a similar situation may arise when the

crystal metric fortuitously corresponds to the higher symmetry

system. Such cases are termed pseudomerohedry. Again, the

twinning operation is a symmetry element present in the high-

symmetry group of the lattice but absent in the proper

symmetry class of the crystal. Table 2 gives some examples of

pseudomerohedral twinning possibilities. Because the

pseudomerohedry results from a serendipitous coincidence of

cell dimensions, the overlap of twin lattices may not be ideal

and sometimes a broadening or split of re¯ection pro®les can

be observed, especially at high resolution. Otherwise,

Figure 2
Examples of diffraction images from non-merohedrally twinned crystals. (a)±(d) A crystal with unit-cell dimensions fulfilling the condition:
4a cos� + c = 0, which leads to an overlap of reflections on every second line with l = 2n: (a) the diffraction pattern, (b) and (c) two possible indexing
schemes, (d) a scheme explaining the underlying geometry. (e)±(h) A crystal with an overlap of every fourth line with l = 4n and unit-cell dimensions
fulfilling 8a cos� + c = 0.



pseudomerohedrally twinned crystals have identical char-

acteristics to the classic merohedral twins.

Sometimes only a subset of re¯ections from two twin

domains overlap, which is termed non-merohedral twinning.

This type of twinning is characterized by abnormalities in the

diffraction pattern, with some planes or lines of re¯ections in

reciprocal lattice having different numbers of re¯ections to

others, which cannot happen in a single lattice (except as a

result of absences resulting from screw axes or glide planes).

Examples of diffraction images from non-merohedrally

twinned crystals are shown in Fig. 2.

If the lattices of twin components ®t in less than three

dimensions, diffraction images recorded from such epitaxic

twins are usually characterized by streaks or overlap of
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Figure 2 (continued)
Examples of diffraction images from non-merohedrally twinned crystals. (e) The diffraction image, (f) and (g) two possible interpretations, (h) the
explanation.
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re¯ection pro®les in a particular direction. Such diffraction

patterns are dif®cult to interpret and are similar to images

from split or highly mosaic crystals.

Further discussion will be restricted to merohedral or

pseudomerohedral twins of macromolecules, excluding mirror

planes or center inversions as twin operations.

2. Effect of twinning on diffraction intensities

Merohedral or exact pseudomerohedral twinning cannot be

recognized by inspection of diffraction images, since the

geometric characteristics of the reciprocal lattice do not reveal

that it may consist of two perfectly overlapped sets of re¯ec-

tions. In view of this, one of the criteria often given for iden-

ti®cation of twins, that `the metric symmetry of the lattice is

higher than the Laue symmetry of the crystal', is not useful at

the stage of the initial interpretation of diffraction images

from the newly obtained crystals. This is true for any pair of

subgroup/supergroup relations, e.g. a primitive tetragonal

crystal can be indexed as orthorhombic, monoclinic or

triclinic.

However, the true symmetry of the crystal depends on its

content, not on the geometry of its lattice; therefore, the

crystal symmetry should be inferred from the symmetry of the

distribution of re¯ection intensities in reciprocal space. The

metric of the reciprocal lattice can exclude some higher

symmetry systems, but cannot identify which of the lower

symmetry systems (subgroups) is correct. The triclinic crystal

may by chance have all cell dimensions almost equal and all

angles very close to 90�, yet despite having the cubic lattice

metric, the intensities diffracted from this crystal will not

merge in any symmetry higher than triclinic.

In the case of merohedral twins, the symmetry of the

distribution of re¯ection intensities in reciprocal space may be

misleading. If the original (untwinned) intensities of the

individual re¯ections in a pair related by the twin operation

are I1 and I2, the intensities measured from a crystal with the

twin fraction � will be J1 = �I1 + (1 ÿ �)I2 and J2 = (1 ÿ �)I1 +

�I2. For perfect twins with � = 0.5, both intensities are equal

and the intensities measured from such a crystal will merge

perfectly in the symmetry higher than that of the real crystal

point group. If the twin fraction is smaller than 0.5, the data

will merge well in the correct point group, but in higher

symmetry will give an Rmerge value lower than 55%, expected

for a completely wrong symmetry assignment. Such a behavior

of Rmerge is a simple and typical qualitative warning that a

partial merohedral twinning may be present.

The above discussion refers to the distribution of re¯ection

intensities in reciprocal space. Since X-rays diffracted from

separate twin domains do not interfere, the intensities of

re¯ections measured from a twinned crystal consist of the sum

of the intensities of the individual twin domains, weighted by

their relative volumes illuminated by the X-ray beam. If the

separate domains had the same orientation, as in the single-

crystal specimen, the diffracted X-rays would interfere and the

intensity of the diffracted X-rays would correspond to the sum

of the structure amplitudes, not the intensities. As a conse-

quence, re¯ections measured from a twinned crystal display

intensity statistics that differ from classic Wilson's theory. This

can be explained simply as follows. A set of intensities from a

single crystal is characterized by a certain low percentage of

very weak re¯ections and a certain small amount of very

strong re¯ections. In the twinned crystal, re¯ection intensities

are added up in pairs related by the twin law. The probability

that the twin operation connects two very weak or two very

strong re¯ections is, therefore, rather low and, as a conse-

quence, in the data set measured from a twinned crystal the

amount of extreme, very low or very strong intensities is still

Table 2
Examples of pseudomerohedral twinning.

In the rhombohedral cell, R corresponds to the rhombohedral setting with a = b = c, � = � =  and H to the hexagonal setting with a = b and  = 120�.

Crystal symmetry Cell conditions Apparent symmetry Twinning operation Reindexing

Monoclinic P a ' c Orthorhombic C Twofold || [101] hkl > lÿkh
Monoclinic P � ' 90� Orthorhombic P Twofold || a hkl > hÿkÿl
Rhombohedral R � ' 60� Cubic F Twofold || [011] hkl > ÿh, l ÿ h, k ÿ h

or twofold || [101] hkl > l ÿ k, ÿ k, h ÿ k
or twofold || [110] hkl > k ÿ l, h ÿ l, ÿl

Rhombohedral H c ' a61/2 Cubic F Twofold || [012] hkl > ÿh, (2h + k + l)/3, (4h + 8k ÿ l)/3
or twofold || [ÿ102] hkl > (h + 2k ÿ l)/3, ÿk, (ÿ8h, ÿ4k, ÿl)/3
or twofold || [1ÿ12] hkl > (ÿh ÿ 2k + l)/3, (ÿ2h ÿ k ÿ l)/3, (4h ÿ 4k ÿ l)/3

Rhombohedral R � ' 90� Cubic P Twofold || a hkl > hÿkÿl
or twofold || b hkl > ÿhkÿl
or twofold || c hkl > ÿhÿkl

Rhombohedral H c ' a(3/2)1/2 Cubic P Twofold || [101] hkl > (h + 2k + 2l)/3, ÿk, (4h + 2k ÿ l)/3
or twofold || [0ÿ11] hkl > ÿh, (2h + k ÿ 2l)/3, (ÿ2h ÿ 4k ÿ l)/3
or twofold || [ÿ111] hkl > (ÿh ÿ 2k ÿ 2l)/3, (ÿ2h ÿ k + 2l)/3, (ÿ2h + 2k ÿ l)/3

Rhombohedral R � ' 109.5� Cubic I Twofold || [11ÿ1] hkl > k, h, (ÿh ÿ k ÿ l)
or twofold || [1ÿ11] hkl > l, (ÿh ÿ k ÿ l), h
or twofold || [ÿ111] hkl > (ÿh ÿ k ÿ l), l, k

Rhombohedral H c ' a(3/8)1/2 Cubic I Twofold || [ÿ201] hkl > (h + 2k ÿ 4l)/3, ÿk, (ÿ2h ÿ k ÿ l)/3
or twofold || [021] hkl > ÿh, (2h + k + 4l)/3, (h + 2k ÿ l)/3
or twofold || [2ÿ21] hkl > (ÿh ÿ 2k + 4l)/3, (ÿ2h ÿ k ÿ 4l)/3, (h ÿ k ÿ l)/3



smaller than in the case of a single crystal. The intensities from

twinned crystals have therefore a sharper distribution around

the mean value than that resulting from Wilson statistics.

As pointed out by Rees (1980), the structural disorder

leading to additional local symmetry has an effect opposite to

twinning, with the intensity distribution ¯atter than in Wilson's

distribution.

The theory of intensity statistics for merohedrally twinned

crystals was worked out by Stanley (1955, 1972) and Rees

(1980, 1982). For very convenient practical comparisons, one

may use the cumulative intensity distribution N(z), giving the

fraction of all re¯ections with intensities below the limit z

(Howells et al., 1950). The formulae for untwinned and

perfectly twinned centric and non-centric re¯ections are

shown in Table 3. As can be seen, the distribution for a

perfectly twinned centrosymmetric crystal is the same as for an

untwinned non-centrosymmetric crystal. Therefore, in the

calculation of intensity statistics, the centrosymmetric re¯ec-

tions have to be treated separately, since in the high-symmetry

cubic, hexagonal or tetragonal space groups, particularly at

low resolution, the fraction of centrosymmetric re¯ections is

signi®cant.

The higher moments of the intensity distribution provide

another global distinguishing criterion (Stanley, 1972). They

have been routinely used for con®rming the presence or

absence of the center of symmetry in small structure crystals

and are also distinctive for twinned crystals, as indicated in

Table 3.

3. Detection of (pseudo)merohedral twinning

Several tests based on various properties of the intensity

distributions have been proposed and used in practice in

small-molecule and macromolecular crystallography. They will

be illustrated here with data collected from the pseudo-

merohedrally twinned P21 crystal of gpD, the capsid-

stabilizing protein of bacteriophage � (Yang, Dauter et al.,

2000; Yang, Forrer et al., 2000), and from merohedrally

twinned P43 crystals of interleukin-1� (Rudolph et al., 2003).

3.1. Packing considerations

The presence of twinning may sometimes be concluded

from crystal-packing considerations. Even if the diffraction

data merge well in the high-symmetry space group, there may

not be enough space in the unit cell to accommodate the

required number of molecules. An unrealistically low

Matthews number, VM, and solvent content (Matthews, 1968)

in high-symmetry crystals suggest possible twinning. IL-1�
crystallizes with unit-cell parameters a = b = 53.9, c = 77.4 AÊ .

In space group P43 with four molecules in the unit cell, it gives

a Matthews coef®cient VM of 2.9 AÊ 3 Daÿ1 and a solvent

content of 58% (Rudolph et al., 2003). Even if this crystal was

perfectly twinned, the space group P4322 could not be

accepted, because eight molecules in the unit cell would

require the VM value to be 1.45 AÊ 3 Daÿ1, well below the

acceptable limit of 1.75 AÊ 3 Daÿ1.

3.2. Moments of intensities distribution

As mentioned above, one of the consequences of twinning

is the smaller fraction of very weak as well as very strong

intensities in the entire population of re¯ections. This is

analogous to the difference between diffraction patterns of

centrosymmetric and non-centrosymmetric crystals. Experi-

enced small-structure crystallographers are able to differ-

entiate between the presence or absence of the center of

symmetry by looking at a single precession or Weissenberg

photograph, from the amount of re¯ections that are un-

observable by eye (i.e. very weak). In these terms, the

diffraction intensities from twinned crystals appear hypo-non-

centric, with less variation of their values than the average.

This is understandable, since twinning results in the averaging

of unrelated intensities in pairs. In a quantitative representa-

tion, the variance (and higher moments) of the intensity

distribution is smaller for twinned crystals than for single

specimens. The Wilson (1949) ratio hFi2/hIi is expected to be

0.785 for normal non-centrosymmetric re¯ections and 0.885

for such re¯ections from twinned crystals, as shown in Table 3

(Stanley, 1972). Fig. 3 shows these values calculated in reso-

lution ranges from gpD and IL-1� data and, as a control, the

obviously untwinned accurate data from lysozyme (Dauter et

al., 1999). The points shown in the ®gure are considerably
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Table 3
Various statistical formulae for untwinned and twinned crystals.

(a) Intensity distributions.

Cumulative intensity distributions
Non-centrosymmetric re¯ections

Untwinned 1N(z) = 1 ÿexp(ÿz)
50% twinned 1N(z, 0.5) = 1 ÿ (1 + 2z)exp(ÿ2z)
� twinned 1N(z, �) = (�[exp(ÿz/�) ÿ 1] ÿ

(1 ÿ �){exp[ÿz/(1 ÿ �)] ÿ 1})/
(1 ÿ 2�)

Centrosymmetric re¯ections
Untwinned ÿ1N(z) = erf(z/2)1/2

50% twinned ÿ1N(z, 0.5) = 1 ÿ exp(ÿz)
Cumulative S(H) distributions

Non-centrosymmetric re¯ections S(H) = H/(1 ÿ 2�)
Centrosymmetric re¯ections S(H) = cosÿ1[H/(2� ÿ 1)/�]

(b) Moments of I and H.

hI2i/hIi2
hFi2/hIi
(Wilson ratio) hHi hH2i

Non-centrosymmetric 1
2 ÿ � (1 ÿ 2�)2/3

Untwinned 2.0 0.785 (= �/4) 0.5 0.333
50% twinned 1.5 0.885 0.0 0.0

Centrosymmetric 2(1 ÿ 2�)/� (1 ÿ 2�)2/2
Untwinned 3.0 0.637 (= 2/�) 0.637 0.5
50% twinned 2.0 0.785 0.0 0.0

(c) Moments of L and cumulative N(|L|) distributions.

h|L|i hL2i N(L) N(|L|)

Non-centrosymmetric
Untwinned 1/2 1/3 (L + 1)/2 |L|
Twinned 3/8 1/5 (L + 1)2(2 ÿ L)/4 |L|(3 ÿ L2)/2

Centrosymmetric untwinned 2/� 1/2 arcos(ÿL)/� (2/�)arcsin(|L|)



CCP4 study weekend

2010 Dauter � Twinned crystals and anomalous phasing Acta Cryst. (2003). D59, 2004±2016

scattered and although on average they suggest that the crystal

of lysozyme was not twinned and that those of gpD and IL-1�
were considerably twinned, it is dif®cult to satisfactorily esti-

mate the degree of twinning from these graphs.

3.3. Britton plot of `negative intensities'

As pointed out above, the intensities measured from a

twinned crystal are combined from two twin domains with

weights proportional to their volumes,

I1 � �J1 � �1ÿ ��J2;

I2 � �1ÿ ��J1 � �J2;

where I1 and I2 are the measured intensities of a pair of

re¯ections related by the twinning operation, J1 and J2 are the

true intensities of these re¯ections as originating from

untwinned crystal and � is the twinning ratio, equal to the

volume fraction of the smaller twin component.

If � is smaller than 0.5, this system of equations can be

solved for J1 and J2,

J1 � ��1ÿ ��I2 ÿ �I1�=�1ÿ 2��;
J2 � ��1ÿ ��I1 ÿ �I2�=�1ÿ 2��:

These equations are the basis of the detwinning procedure,

which is possible only for � < 0.5. Detwinning of perfectly

twinned data is impossible, since for � = 0.5 the system of

detwinning equations becomes indeterminate.

Data collected from merohedrally twinned crystals can very

conveniently be tested and detwinned using the Yeates & Fam

twinning server at UCLA (http://www.doe-mbi.ucla.edu/

Services/Twinning/).

Britton (1972) pointed out, and earlier Zalkin et al. (1964)

implicitly mentioned, that the assumption of too large a value

of � results in an estimation of negative true intensities. Based

on this principle, Fisher & Sweet (1980) proposed a practical

method for the estimation of the twin fraction �. The `Britton

plot', giving the number of negative intensity estimations as a

function of the assumed value of � in the detwinning proce-

dure, has two linear asymptotes, one for � < �opt and another

for � > �opt. The point at which these two lines cross gives the

estimated value of the twin fraction. The Britton plot for gpD

and IL-1� is shown in Fig. 4. It suggests twin fractions of 0.34

for gpD and 0.32 for IL-1�.

3.4. Murray-Rust F1/F2 plot

The twinning equations can be rearranged to give the ratio

J2/J1,

J2=J1 � �I2 ÿ ��I1 � I2��=�I1 ÿ ��I1 � I2��:
Since both J1 and J2 are positive, neither numerator nor

denominator should be negative, as pointed out by Britton

(1972), and these two conditions can be expressed as � <

I1/(I1 + I2) and � < I2/(I1 + I2) or, as one inequality,

�=�1ÿ ��< I2=I1 < �1ÿ ��=�;
or in terms of structure amplitudes,

��=�1ÿ ���1=2 <F2=F1 < ��1ÿ ��=��1=2:

This property was proposed by Murray-Rust (1973) for esti-

mation of the twin fraction. All points in the graph of F1

plotted against F2 should lie between the two limiting straight

lines corresponding to [�/(1 ÿ �)]1/2 and [(1 ÿ �)/�]1/2. The

slope of the lines bounding the points on the graph can be

used to estimate the twin fraction. The Murray-Rust plots for

gpD and IL-1� are shown in Fig. 5. The twin fractions

Figure 4
The Britton plot of the number of the negative intensities resulting from
the detwinning procedure versus the assumed twinning fraction for gpD
(blue) and IL-1� (red). The asymptotic straight lines extrapolate the right
part of the graph to the estimated twinning ratio.

Figure 3
The Wilson ratio hF i2/hI i (bottom) and the average intensity ratio
hI 2i/hI i2 (top) calculated in resolution ranges for twinned data from
crystals of gpD with � = 0.36 (blue lines) and IL-1� with � = 0.34 (red
lines). As a control, the analogous values for the untwinned accurately
measured data from lysozyme in space group P43212 (Dauter et al., 1999)
are shown in green. Only non-centrosymmetric re¯ections were included.
The theoretically expected values for the Wilson ratio hFi2/hI i are 0.785
(untwinned) and 0.885 (perfectly twinned) and for the hI 2i/hI i2 ratio are
2.0 (untwinned) and 1.5 (perfectly twinned) and are marked as thin black
lines. These tests are suggestive of twinning, but the graphs are too noisy
for quantitative estimation of the twinning fraction.



suggested by these plots are about 0.32 for gpD and 0.34 for

IL-1�.

3.5. Rees N(z) plot

Howells et al. (1950) ®rst introduced the cumulative inten-

sity distribution N(z) plot to differentiate between centro-

symmetric and non-centrosymmetric crystals. The argument z

is the fraction of the local average intensity, calculated in

narrow resolution ranges, and N(z) is the fraction of re¯ec-

tions with intensities below this level. Various intensity

distribution functions show different N(z) curves, particularly

for low values of z. As noted above, the fraction of weak

intensities is lower for non-centrosymmetric crystals than for

centrosymmetric crystals and is lower still for twinned crystals,

which shows up clearly on the N(z) plot. This criterion was

proposed and theoretically worked out by Stanley (1955, 1972)

and elaborated by Rees (1980), who gave the general formula

for the cumulative intensity distribution for a non-centro-

symmetric case with the twin fraction �, as indicated in Table

3. As Stanley (1955) pointed out, the N(z) curve for twinned

crystals is characteristic `in having an opposite initial curva-

ture'; it has a sigmoidal shape in contrast to an exponential

character for normal crystals. He also stated that this test

`would be tedious to apply', which is no longer valid after 50

years of progress in computing technology.
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Figure 5
The Murray-Rust plot of pairs of twin-related structure factors F1 against
F2 for (a) gpD and (b) IL-1�. The slopes of the boundaries of regions
populated by points correspond to the twinning fractions 0.32 and 0.34 for
gpD and IL-1�, respectively.

Figure 7
The Yeates S(H) plots indicate the twinning fractions of 0.36 for gpD
(blue dots) and 0.32 for IL-1� (red dots). Dashed lines illustrate the
theoretically expected slopes (1 ÿ 2�)ÿ1 for various twinning fractions.

Figure 6
The cumulative intensity distribution N(z) plots for gpD (blue dots) and
IL-� (red dots). The black lines correspond to non-twinned (exponential
shape) and perfectly twinned (sigmoidal shape) non-centrosymmetric
data.
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Fig. 6 illustrates the N(z) distributions for gpD and IL-1�,

together with the theoretical curves for untwinned and

perfectly (� = 0.5) twinned crystals. This test qualitatively

characterizes twinned crystals, but cannot provide an accurate

quantitative estimation of the degree of twinning.

3.6. Yeates S(H) plot

This test, proposed by Yeates (1988, 1997), is based on the

behavior of the ratio of the difference to the sum of intensities

of re¯ections related by the twin operation, H = |I1 ÿ I2|/

(I1 + I2). The dependence of the cumulative distribution of this

parameter, S(H), on the twin fraction is very simple (see

Table 3) and is linear in H for non-centrosymmetric crystals.

The slope of the S(H) plot is 1/(1 ÿ 2�) and depends on the

twinning factor more sensitively than the N(z) plot. Moreover,

omission of pairs of weak re¯ection from the calculations does

not bias the results, but actually leads to improved accuracy of

the estimation of the twin fraction. This way of estimating a

twin fraction is usually more robust and accurate than other

tests. Fig. 7 illustrates the S(H) plots for gpD and IL-1�. Apart

from the cumulative distribution S(H), the average values hHi
and hH2i are characteristic for particular twin fractions, as

noted in Table 3. These average values are 0.168 and 0.0408 for

gpD and 0.154 and 0.0333 for IL-1�, which gives an estimation

of the twin fraction as 0.332 and 0.325 for gpD and as 0.346 and

0.342 for IL-1�, respectively.

3.7. Local intensity differences: L-function

Recently, Padilla & Yeates (2003) introduced a very robust

statistic, especially suited to crystals displaying abnormalities

in their diffraction patterns, resulting for example from

pseudo-centering or anisotropy. In such cases, the intensities

of some re¯ections are systematically different. If diffraction

extends to higher resolution in one

direction of reciprocal space than in

another, the intensity statistics for such

anisotropically diffracting crystals will

be abnormal. Similarly, if there are

multiple molecules in the asymmetric

unit related by a parallel translation by

a vector close to a fraction of the unit

cell, some classes of re¯ections,

depending on the parity of their indices,

will have abnormally weak intensities,

shifting the overall intensity statistics

towards the centrosymmetric character,

in the direction opposite to that of

twinning. In such cases, the twinning

tests described above will not be deci-

sive. However, the newly proposed L-

function, based on the local intensity

distribution, is very robust and unam-

biguous.

The quantity L is the ratio of the

difference to the sum of a pair of

re¯ections L = (I1ÿ I2)/(I1 + I2), but the

two re¯ections I1 and I2, in contrast to the H-function, are not

related by the twin law. Instead, they are selected in the

vicinity of each other in the reciprocal space. For pseudo-

symmetric crystals their indices may for example differ by 2 or

4, comparing neighboring re¯ections from the same parity

group.

The average values of the moments of L are characteristic

for twinned and untwinned crystals, as well as its cumulative

distribution, N(|L|), are given in Table 3.

3.8. Additional remarks

In the detwinning of diffraction data and the use of the

twinning tests described above, one should be aware of three

important points. Firstly, detwinning is possible only if � is not

too close to 0.5. Fisher & Sweet (1980) estimated that the

relation between uncertainties of the detwinned, �(J), and

measured, �(I), intensities is

��J� � ��I���1ÿ 2�� 2�2�1=2=�1ÿ 2���

and for � approaching 0.5 the detwinned intensities become

very inaccurate. Of course, for perfect twins, with � = 0.5,

detwinning is not possible at all.

Secondly, several twinning tests (those of Britton, Murray-

Rust and Yeates) are based on comparison of the twin-related

re¯ection intensities. This obviously requires that the diffrac-

tion data are merged in the proper low-symmetry point group.

However, if the data were collected from a crystal that is not

twinned, the above tests would indicate perfect twinning, since

the re¯ections connected by the potential twinning relation

(but in fact the valid symmetry operation) have equal inten-

sities. As mentioned before, the Rmerge value does not discri-

minate between perfectly twinned and non-twinned crystals.

The only useful tests in such cases are those based purely on

Table 4
Macromolecular structures of twinned crystals available in the literature.

Structure Method
Space
group

Twin
fraction Reference

Plastocyanin MR P32 0.5 Redinbo & Yeates (1993)
FMD virus O1 G67 MR I23 0.5 Lea & Stuart (1995)
Procarboxypeptidase A complex MR R3 0.37 Gomis-RuÈ th et al. (1995)
Fish deoxyhemoglobin MR P21 0.28 Ito et al. (1995)
N-terminal half of lactoferrin MR P31 0.40 Breyer et al. (1999)
Signal transduction protein PII MR P63 0.17 Carr et al. (1996)
Bacteriorhodopsin MR P63 0.46 Luecke et al. (1998)
�-Lactalbumin MR P3 0.49 Chandra et al. (1999)
Xenobiotic acetyltransferase MR R3 0.20 Chandra et al. (1999)
R-phycoerythrin MR R3 0.48 Contreras-Martel et al. (2001)
Cocaine hydrolytic antibody MR P21 0.43 Larsen et al. (2002)
B-phycoerythrin MIR R3 0.01±0.06 Fisher & Sweet (1980)
Rat mast cell protease II SIR + MR P31 0.03±0.24 Reynolds et al. (1985)
Hydroxylamine oxidoreductase MIR P63 0.08±0.36 Igarashi et al. (1997)
RNA heptamer SIRAS P1 0.5 Mueller et al. (1999)
50S ribosomal subunit MIRAS P21 0.27 Ban et al. (1999)
Peroxiredoxin 5 SIR P21 0.24±0.46 Declercq & Evrard (2001)
Deacetoxycephalosporin C synthase MIR R3 0.06±0.27 Terwisscha van Scheltinga

et al. (2001)
gpD MAD P21 0.36 Yang, Dauter et al. (2000),

Yang, Forrer et al. (2000)
Interleukin-1� MAD P43 0.40 Rudolph et al. (2003)



the distribution of measured intensities; that is, Wilson ratios

or N(z) cumulative intensity distribution, where it does not

matter whether the data have been merged in the crystal or

the lattice symmetry. It is a good practice to always check the

N(z) distribution of the processed data, particularly in the

hexagonal, tetragonal or cubic space groups.

Thirdly, care should be exercised in detwinning the anom-

alous diffraction data in order to avoid mixing the positive and

negative Friedel mates. Since macromolecules are chiral, the

twinning operations can only be pure rotations, always relating

Friedel mates of the same character. Therefore, the positive

and negative Friedel mates can be detwinned separately. In

practice, however, attention should be directed to the de®ni-

tion of the asymmetric unit in this procedure. For example, for

the monoclinic crystal of gpD, the asymmetric unit de®ned as

in the CCP4 (Collaborative Computational Project, Number

4, 1994) programs is ÿhmax � h � hmax, 0 � k � kmax, 0 � l �
lmax and the twinning operation is the twofold axis diagonal

between the a and c directions, relating re¯ections h, k, l and

l,ÿk, h. However, re¯ections with negative k do not belong to

the same asymmetric unit and have to be converted by the

mirror symmetry to l, k, h (if h is positive) or to ÿl, k, ÿh (if h

is negative), which requires exchanging the Friedel mates. For

example, the measurement I+(2, 3, 4) should be paired with

Iÿ(4, 3, 2) and I+(ÿ3, 4, 5) with Iÿ(ÿ5, 4, 3). Re¯ections h0l

are centrosymmetric and re¯ections hkh and ÿhkh are

somewhat special, since the twinning operation relates them

with their own Friedel mates.

4. Solution of twinned crystal structures

4.1. Phasing

Not many macromolecular structures of twinned crystals

are available in the literature. Basic information on these

structures is collected in Table 4. However, there is probably a

number of available structures that may be undetected twins

(Yeates & Fam, 1999).

If the twin fraction � is smaller than 0.5, it is possible to ®rst

detwin the data and then use such data for structure solution.

It is not clear over which range of � the detwinning procedure

is bene®cial. If � is small, it may not be necessary to apply

detwinning in order to obtain the structure solution; if � is too

close to 0.5, the detwinning procedure may introduce errors

exceeding the effect of twinning itself. The bene®t gained from

the detwinning procedure signi®cantly depends on the accu-

racy of the originally measured intensities. Often, the struc-

tures can be solved from the original, not the detwinned, data.

In fact, the structure of gpD was solved by MAD before

detecting that the crystal used had a twin fraction of 0.36

(Yang, Dauter et al., 2000).

If the molecular-replacement calculations are performed on

the original data, multiple solutions can be expected in the

rotation function, re¯ecting different orientations of the

individual twin domains with corresponding weights. In the

translation function the smaller twin domain contributes

additional noise, but the principal solution should correspond

to the main domain.

The MIR approach relies on the small differences between

the native and derivative data; if the twin fractions of deri-

vative and native crystals are high or signi®cantly different, the

phasing procedure can be severely impaired. According to the

analysis of Yeates & Rees (1987), four derivatives are neces-

sary in principle to uniquely estimate the protein phase,

instead of two as in the classic MIR approach.

The identi®cation of heavy-atom sites may be not trivial. It

may not be possible to fully interpret the isomorphous

difference (as well as the anomalous difference) Patterson for

highly twinned crystals in any of the potential space groups.

Since the X-rays diffracted by the individual twin domains do

not interfere, the Patterson synthesis calculated with such data

corresponds to the superposition of two Patterson maps

transformed by the twinning operation. Certain Harker

sections will re¯ect the higher symmetry, but the potential

Harker sections originating from the twinning operations

(rotations) will be featureless, even with measured intensities

merged in the higher apparent but wrong symmetry. For

example, for a perfectly twinned crystal in the space group P4,

the data can be merged in P422. In the Patterson synthesis the

Harker section w = 0 will have 4mm symmetry, as expected for

the 422 class, but the Harker sections in the (100) and (110)

planes will not show any peaks resulting from the potential

existence of dyads in the ab plane.

The MAD and SAD approaches may be expected to be less

severely impaired by twinning than MIR, since diffraction

data are usually collected from a single specimen with a

constant twin fraction.

4.2. Refinement

Once the preliminary model of the structure is available, its

parameters and the twin fraction can be re®ned, taking into

account the twinning relations between structure amplitudes.

This is possible by the method proposed by Jameson (1982)

and Pratt et al. (1971) or the similar iterative approach

(Redinbo & Yeates, 1993; Yeates, 1997), where the calculated

squared amplitudes and the derivatives are accumulated from

the individual twin contributions after appropriate transfor-

mation. This approach is implemented in SHELXL (Sheldrick

& Schneider, 1997; Herbst-Irmer & Sheldrick, 1998) and CNS

(BruÈ nger et al., 1999). It has the additional advantage of

producing on output the detwinned structure factors for

standard Fourier map calculations. Almost all twinned

macromolecular crystal structures have been re®ned in this

way.

5. SAD calculations on gpD

The SeMet variant of the capsid-stabilizing protein of

bacteriophage �, gpD, crystallizes in space group P21 with

unit-cell parameters a = 45.51, b = 68.52, c = 45.52 AÊ , �= 104.4�,
which are very similar to those of the native crystals. Because

the a and c parameters are virtually identical, this cell can be
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indexed as C2221 with a = 56.02, b = 72.13, c = 69.03 AÊ , where

the orthorhombic a and b axes are parallel to the diagonals

between the monoclinic a and c directions. Each monomer has

Figure 8
The Harker section v = 1

2 of the anomalous difference Patterson for a SeMet gpD crystal, calculated with (a) the original gpDO data, (b) the detwinned
gpDD data and (c) the fully twinned gpDT data. The self-vectors corresponding to six Se atoms in the major twin domain are labeled in red and the
vectors expected for the minor domain are marked in blue.

two SeMet residues and the asymmetric unit contains three

monomers arranged according to the non-crystallographic

threefold axis. The structure has been solved from the 1.7 AÊ

SeMAD data and re®ned anisotropically against the 1.1 AÊ

native data (Yang, Forrer et al., 2000) to an R factor of 9.9%

with SHELXL. Both SeMet and native crystals were

pseudomerohedrally twinned (Figs. 3, 4, 5a and 6) with a twin

fraction which re®ned with SHELXL to 0.36. The details of

structure solution and some MAD tests using different

programs and protocols have been published separately

(Yang, Dauter et al., 2000).

Here, other phasing tests are presented based on the single-

wavelength anomalous diffraction (SAD) approach. Only the

1.7 AÊ peak-wavelength SeMet data set was used for these

calculations. The original data were modi®ed in two ways.

Firstly, they were detwinned according to the principles

explained above. Secondly, the intensities related by the twin

operation (a rotation around the twofold axis diagonal

between a and c axes) were averaged, yielding data corre-

sponding to a perfectly twinned crystal with � = 0.5. These

three data sets will be referred to as gpDO (original), gpDD

(detwinned) and gpDT (twinned).

Fig. 8 shows the v = 1
2 Harker sections of the anomalous

difference Patterson syntheses calculated with the three sets of

data. All six self-vectors are clearly visible in all three cases.

As expected, the gpDD synthesis is marginally clearer than

gpdO, with most of the peaks corresponding to the minor twin

domain suppressed. Again, as expected, the gpDT synthesis

has orthorhombic symmetry, since contributions of both

domains were deliberately equalized.

The location of the selenium sites was also attempted by the

direct-methods approach with SHELXD (Schneider & Shel-

drick, 2002) based on Bijvoet differences. This step was highly

Table 5
Identi®cation of anomalous sites and phasing statistics for gpD.

Data gpDO gpDD gpDT

Location of Se sites with SHELXD
Percentage of good solutions 98 99 97
Height of peak No. 1 1.00 1.00 1.00
Height of peak No. 6 0.62 0.57 0.55
Height of peak No. 7 0.14 0.16 0.20

Phasing with SHELXE
Phase difference (�) 53.1 56.7 65.1
CC total 0.69 0.63 0.49
CC main chain 0.76 0.71 0.57
CC side chains 0.64 0.57 0.46
Residues built by APR/wARP (out of 285) 277 272 6



successful, with almost all multisolution trials leading to

proper solutions of selenium sites, with a clear contrast

between the last correct (sixth) and ®rst spurious (seventh)

peak (Table 5a). The results obtained from the perfectly

twinned gpDT data were almost as clear as from the other two

sets.

The identi®ed anomalous scatterers sites were input to

SHELXE (Sheldrick, 2003) for the estimation of protein

phases with a simultaneous density modi®cation. The phase

sets obtained were input to automatic model building with

ARP/wARP 5.1 (Perrakis et al., 1999) in conjunction with

REFMAC (Murshudov et al., 1999). The results of phasing are

summarized in Table 5(b) and a region of the resulting

electron-density maps is illustrated in Fig. 9. The quality of

phasing against the gpDO and gpDD data was practically

equivalent, with an average error of 53±57�. The correlation

coef®cient (CC) between the SHELXE and the ®nal re®ned

electron-density maps was 63±69% overall and 71±73% for the

main chain (Figs. 9a and 9b). ARP/wARP automatically built

more than 90% of amino acids into both the gpDO and gpDD

maps. The protein phase estimation was less successful with

the fully twinned gpDT data, where the resulting average

phase error was 65� and the map was much poorer, with a CC

of 49% overall (57% for main chain). This map was not clear

enough for ARP/wARP, but a visual inspection showed that

large portions of this map were interpretable (Fig. 9c). The

stepwise model building and re®nement of the partial model

and the twin fraction with SHELXL eventually led to a

complete structure.

6. Conclusions

Several simple tests exist and can be used to check if the

diffraction data originate from twinned crystals. Such tests are

strongly recommended as a `default' for crystals of high

symmetry or when unit-cell dimensions are amenable to

potential pseudomerohedral twinning. Early detection of this

phenomenon allows the crystallographer to avoid `unex-

pected' obstacles in various stages of the structure solution

and model re®nement. Even if the initial model can be built

with the original data, the existence of twinning, if not prop-

erly accounted for, will seriously impair the process of model

re®nement and the appearance of Fourier maps.

The degree of the adverse effect of twinning on the process

of crystal structure solution is critically dependent on the

accuracy of measured diffraction intensities and, of course, on

the twin fraction. As a consequence of the resulting in-

accuracies, the potentially constructive detwinning of the

original data may in fact lead to more harm than bene®t,

considerably increasing the average error level of the esti-

mated intensities. If the twin fraction is small, it may be not

worthwhile performing the data detwinning; if it is close to 0.5,
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Figure 9
A region of the electron-density map at the 1� level calculated with SHELXE phases for (a) the original gpDO data, (b) the detwinned gpDD data and (c)
the fully twinned gpDT data.
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detwinning will introduce very large errors. The range of twin

fraction where the data detwinning is bene®cial may be

different for different cases. However, it is always bene®cial to

account for twinning in model re®nement and map calcula-

tion.

As shown with the example of the gpD data, crystal twin-

ning does not absolutely prevent the use of the anomalous

signal for a successful structure solution. It may be possible

even for a perfectly twinned crystal with accurately measured

data and strong enough anomalous scattering signal.

The author wishes to express his gratitude to Markus

Rudolph for the kind provision of the interleukin-1� data set

and permission to use it as a test example at the CCP4 Study

Weekend (York, January 2003) and in this paper
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